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li. SCALARS AND VECTORS

Vectors
982459

The physical quantities which are completely defined b>

magnitude alone, are called scalars. They are represented by Latin
or Greek letters. They obey the ordinary laws of algebra. Exa^Qple^
are mass, charge, time, temperature, etc. In addition, there are
other physical quantities which are completely determined by a
magnitude and a direction in space and follow the parallelogram law
of addition. These are called vectors and are represented by bola^
face letters OT Greek letters with arrow over them, Th^y eiTQ repres

^

ted geometrically by an arrow pointing in the direction of
vector and of length equal to its magnitude. Examples are velocii}

'

displacement, force, momentum, electric and magnetic fields, etc.
The vectors may be classified as :(1) polar vector and (2) axial vector.
For the quantity, in which more linear action in a particular direc-
tion is involved, the vector is called a polar vector (e.g., displace-
ment, velocity, force, etc). For the quantity, in which rotary action
of some kind takes place about an axis, the vector is called axial
vector (e.g., angular velocity, angular acceleration, etc.),

A vector which has no magnitude is c^^^_si^ jiuil or zero
vector. If it is added with an>r-smctor A, ffi^ector A will al vays
remain unchanged, ue..

... ( 1 )

called unit vector. It is

On multiplying a scalar

direction of the unit

0+A=A.
A vector whose module is unity is

represented by a letter with a cap over it.
with the unit vector we get a vector in the
vector, i.e.,

A

A= .4A.

.
vectors A and B are said to be equal if and on!

have the same magnitude and the same direction, i.e.,

A A A ^^ ^ A A
A=Bor AA=BB, if A==B nnd A^B. (3>
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Fig. 1.3

If ,4,., Av and are the magnitudes of components of the
vector A parallel to the axes x,y and z respectively, then

A=^j,i+/4vj-f-.f42k.
•••(?)

where i j and k are vectors of unit length along the axes x, v andX respectively. The sum of two vectors may thus be written as

^ + ...(8 )

^J-?^ULTIPLIGATION OF VECTORS
When a vector A is multiplied by a scalar b, a new vector Cis formed wQose direction is the same as that of the original vectorA and whose magnitude is the product of the scalaf 6 and Semagnitude A ot the original vector A. Thus

G=b^.=b{A^^Ay\+ AM]. (Qx

Similarly
"

(.a+b) A=aA+6A.
_ __

define5°“°'"‘“® multiplication have been

product of two vectors A
B

r'^
^'**^*' The scalar

and R IS a scalar quantity. It is indicated

aL * 1

?^’ ? between the two vectorsand thus is also known as dot-product.
its magnitude is equal to the product of

rnagnitudes of two veciors and the
cosine of the angle between them.

A.B=^5cos0=B.A ...(11) Fig.lA

B ^ relation shows that the scalar product is commutative. As

defineH
® ajoiJg A, hence the scalar product may be

one vector
numerically equal to the magnitude of

r multiplied by the component of the other along the first.

fnr
product of two perpendicular vectors is zero. ThusKor the unit vectors i. j and k, we have
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i.j=j.k=k.i=0 and i.i=j,j=k.k=l.

A3={A^i+Ayi+A,mB^+Byi+BM)
=AxBa~{‘AyBy~{-AzBz*

' Relation (11) shows that

A.B=i45 cos 0—AB,

A3—AB cos 7t=—AB
A,B=0

...(12)

...(13>

if A 1! B

if e=n
if either 6=7:12 or both or at
least one vector is zero.

ictor Product. The vector product of two vectors is a
vector qdkhtity. It is indicated by placing a cross between the
vectors, hence is also called cross product. Its magnitude is equal
to the product of the magnitudes of two vectors and the sine of the

Fig, 1,5.

angle between them. Its direction is _L to the plane containing these

vectors and is governed by the right handed screw if turned from the
^
^first vector towards the second vector. If vectors A and B are in x--y
plane, the resultant vector C=AxB is _L to both A and B and is

therefore in the z-direction.

C=AxB=,4B sin
<t> n=—Bx A.

A

where n indicates the direction of normal.

Since AB sin 6 represents the area of the parallelogram having
A and B as adjacent sides. Hence vector product of two vectors
may be defined as a vector of magnitude equal to the area of the
paral elogratn with these vectors as its adjacent sides and in the
direction J. to this area (Fig 1.5).

Another way to obtain the direction of a vpptr.r
the right hand rule. If we wrap fingers of the riaht
the axis, which is 1 to the plane of vec o s A Lnd B so

thumb will give the direction of the vector produc^t A X B
^
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Since AxB^Bx A, hence the vector product is not com*
mutative. Relation (14) shows that

AxB = 0 ifAl|BorA=B ^
A

AxB=^Sn ifA 1 B.

For unit vectors, we have

ixj=k, jxk=i, kxi=j
iXi=jXj=kxk=0.and

•‘•(15)

sed as

In cartesian co-ordinates, the vector product may be expres-

AXB=
i j k
Ax Ay Az
Bx By Bz

i{AyBz—AzBy)+\[AzBx— AxBz)

1*3. MULTIPLE PRODUCT
(0 A. (B+ C)=A.B4-A,c
(//) Ax(B+C)-AxB+AxC.
{in) (A,B)C= {AB cos B)G~ABC cos B along vector G.

(iv) A.(BxC)=B.(CxA)=C.(AxB)
! Ay A%

I

By Bz
' Cx Cy Cz

...(16)

•••(17)

...(18)

...(19)

magnitude to the volume of the

A R inH
^'0® the three vectors

^llfd
teason, such a vector product is-ailed scalar triple product. It has following properties.

(c) If A, B, and C coplaner or parallel to the same plane.
A.(BxC)=0. ^

(o) If A,B, and C are orthogonal to each other,

A.(BxC)= ^5C.
(c) If any two of the three are identical or parallel.

A.(A X C)= A.(B X A)= A.(B X B)=0.
(v) Ax(BxC)=(A,G)B-(A.B)C.

...(20)

H is a vector quantity and is thus called vector triple product
tJne can prove very easily that

Ax{BxC)+Bx{Cx A)+Cx(AxB)=0 , ...(21 )

integration OF

variahTpf
‘=xP.''essed as functions of scalar

function of
example, the electric field E can be expressed as a

be d The vector may
Thu^ if F z

integrated with respect to these variables.

Tentiai nf F '\u
of the scalar variable u, the diffe-

-ential of F with respect to a scalar variable u is defined as
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du

limit ^
Am*^0 Am

limit F(»+Am)-F(«)
Am->-0 Am ...(22)

The derivative is a vector in the direction of AF as Aw
approaches zero. The derivative of the sum of two vectors is the
sum of the derivatives. The derivative of a product is the same as
that for the derivative of a product of scalars, with due regard for
the change in sign if the order of the vectors is changed in the case
of the vector product, such as

:

IfC=A+B, then

dt

dA dB
dt ^ dt

or C= A + B, • «

»

(23)

If C=bAy then

dC dh • • *

If C=A . B, then

•(24)

= -^. B+A.-^ or C=A . B+A . B
dt ••(25)

If C=AxB, then

dC d\ dEB+AX or C =AXB+AXB. ...(26)
l:*

We can differentiate the scalar triple product or vector triple
product with the ordinary processes of dififerentiation. keeping the
order of vectors as unchanged.

The process of integration is the limit approached in a summa*
simple products. When a force F acts for a small distance

, the vtoTk done dW—F,d\, Total work done over a large distance
is given by

W JF . dl=iF cos 6 dl. •..(27)

'S l^nown as line integral of F along the curve.
Similarly we have surface and volume integrals.

1.5. SCALAR AND VECTOR FIELDS

function^ of'' th
expressed as a continuous

a pes are the density fields or temperature fields. Vector func-
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tion F which has values throughout a region constitutes a field
vector Examples are the velocity field or the force

1.6. THE GRADIENT OF A SCALAR FIELD
Let

f be a scalar point function, which is continuous in the

fthe'^evH^w
‘=0“sider two level surfaces

ot which the function has the same value, e.^ isothermal nr
equipotential surfaces) 5i and

’ or

^2 very close together.
Fig 1.6. If these surfaces are
characterised by scalar func-
tions cf) and respective-
ly. Reference to the origin
Of we then have

^
OP =r, OP'=r+8r.

hence PP' =5r.

The rate of increase of
p at point Pin the direction
PP is m^r with the limit
r->0. The least distance Fig, L6

between the surfaces is PQ in the direction of unit normal vector n.

Here « represents a unit normal at P to the level surface of 6through P in the directic - of ^ increasing. Thus the maximum rate

f. a"S7„?h PP'!fl!e”

A
8/i=Sr cos 6 or 8«=n . Sr.

In 87 =-87

or

• S/2

As cos 5<1, hence ^/2< 8r and

Limit _ 0^
dn

A

Sr-^0 Sr (28)

i at ^h^ of increase of
function l. Henfe

“ grad of a scalar point

grad 4>=idtf>ldn) n.
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It shows that ihe gradient of a scalar field is a vector field. This

vector has magnitude equal to the most rapid rate of change of the

scalar field and is in the direction in which this rate is maximum.

= 91 i+ ^k, -(30)
0x ^ 3;' ^ dz

'

#

A A A

where (dx/dn) n, (dyldn) n and {dzidn) n are the unit vectors i. j and

k along the axes y and z respectively.

where the differential operator V is pronounced as del or nabla. It

is defined as

As a differential operator the V vector by itself can be

characterized neither by magnitude nor by direction. It only

assumes a definite value when it is applied to some field quantity. If

it is applied to a scalar then we have V ^=grad <f>.
If the scalar

function represents temperature, then V^=grad ^ is a tempera-

ture gradient. It is a vector quantity. Its direction being that in

which the temperature changes most rapidly.

Important Deductions

(1) Gradient of sum of two scalar functions is the vector sum
of their gradients, i.e,,

V(u+v)==V«+Vv,

(2) V(uv)=Vwv+vVu.

V/(«)=/'(«)Vw. ...(33)

THE DIVERGENCE OF A VECTOR FIELD

For a physical concept of the divergence of a vector point
function, v, let us consider an infinitesimal element of volume with
sides A^, Ay and A^ parallel to the axes of x, ;; and z, respectively
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(Fig 1.7). Let the vector point

function v at the middle of this

element has components of

magnitude v®, Vy and Vz along

these axes.

Consider the two faces

of the volume element each

with area Ax Az perpendicu-

lar to the ;V-axis. On the left

hand face of the volume, the

value of Vy at the middle of

the face becomes

I M

V/'l ,

1 0Vv

'“T
hence the above

Similarly, on the
Since the face area is infinitesimally small,

value may be taken as the value all over the face,

light hand face, the value of Vv is

1

^ GVy ,

We define the flux of a vector field through any face as the

scalar product of the vector area of the face and the vector v, i,e.,

the product of the area of the face and the normal component or

the vector upon it. Thus the flux entering the element in the

direction

and flux leaving the element in the y-direction

'-[v,+
1 dVy

dy
Ay ^AxAz.

Excess of flux leaving the element over that entering it in

the y-direction is

Vi/+
l_0v

2
'0

^y A ^ AxAz Vy
2 dy

A^Az

= ^:AxAyAz.

Similarly the net outward flux in the x-directiou

=(0Va:/0x)AxAyAz.

and in the 2-direction, it is

=(0 V 2 /82)AxAyAz.
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ekmei; '*™8i”8 f'om or leaviDg Ihe

4- 9^2

02
jAxAjvA

diverglJcVoTthe ‘defined as the•vergence of the vector point function v and is thus written as

div V I 0Vi, , dVz

dx +
02 ...(34)

Since^tt' d?vSScVrthe?°“‘^*"V‘'"
dimensions of the box.

scalar.
‘‘"^"^ence is the amount of net flux, it is essentially a

Since

. dAy
. dA

dx 02
^

--- +•* ^)- (i^*+jr4v+ kr4g)dx dy dz

= V.A.

Hence div v=
dx dy

» 4- r7
•..(35)

flow, or the convergence of thp outward
or V,F ,r

In general we can write it for a vector function F as

divF=v. F=aFjax+3Fj0y+ apjaz. /
It is a scalar quantity and can be represented as

v.F=i;i. (aF*/ax).

Equation (36) can be written as

divF=''®>t j_rp

••(36)

..(37)

...(38)

Thus th^ivergence ofojector ic u •. /• •

per unit VQ/i/mrar7?3r~^7M^V77,77^c surface integral

It is jL scalar quantity. It represents thft^t
Soes to zero,

out ^a volume element, /
amount offlux coming^
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The divergence of a field is positive at any point if either the

fluid il expanding and its density is decreasing at that pomt or there

tracting and^its density is increasing or the point is a sink. If

flow of fluid is zero, divergence is zero.

If there is no source or sink and the density of the fluid is not

changing, the fluid is called
incom-

pressUle fluid or for a solenoidal field, divergence of a vector field F

is ali^ays zero, i.e., div F— V. F— 0.
, , • a

The flux may be flow of liquid, flow of heat or electric flux.

Thus in the electric flux, the existence of a finite positive value of

the divergence at a point shows that there must be a positive charge

at the concerned point.

1.8. LINE INTEGRAL

Let F (ir,>>,z) be a vector function defined throughout some

region of space with two positions A and B anywhere in this region

(Fig 1.8). The line integral of F along the curve of some path tnat

runs between A and B is defined as the integral of tangentia com

ponent of F along the curve. Thus

[B
line iDtegral= F. al.

This means : Divide the path into

segment is represented by a vector d\ and

take the scalar product of the path seg-

ment vector with the vector F. Now
add these products for the whole path.

If the segments are made shorter, this

sum can be represented by the integral

from one end to other.

A

If r is a unit vector tangent to the

curve at any point P with a position

vector r. Its value is given as

A

T=drldL

Line integral—

J

f. Jf. j dl~

...(39)

short segments, each

fF. dr (...40)

Thus we see that dl is equivalent to dr. For the three

dimensional case, we have

F=Fa:i+Fvj+Fzk and

/. IF. dr=i {Fxdx+Fydy+Fzdz). ..(41 )
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integrI!ion'“®fe^‘iM^
or may not depend upon the path of

.efiLd ?;r istrwo 1
f m

U *-
\c. ^ •••(42)

i through c„ thou for cooservativ'LlTrw^g'f

^ F,dr =

Let F=:V therefore

...(43)

wh,ch,yndap=odontofpa,h bu, depends oal, on rho ,„d poims.

For any closed path the above relation reduces to

/ F.*- F.*+ F.*

=V^“~^A+^A—^B=0.

as a grad'iLVoTaTca?ar Afield Ind

are also called the lamellar vSorfiMs
°°

19. SURFACE integral

v.SS represeL Srate'^of dot product

dirertin. -o

° ° through an area SS (whose

=: a'lSr^i^si; ‘p“
F'“°”

-
ta " 1? pS; t‘hth

is rV ««

'

i 2> bdme at all points on it (Fig i Q\ Th« /tr.*.

'Jf
'"'Obihfh’e Srch o

ror a;i'pSs\.'
e,'''b‘'e‘'VuSI ®entire surface.

^ ^ ® through the

4»=2iF. 8S.

Fig. 1.9

...(46)
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If the patches are of very small area, the flux O can be written
as the surface integral, i.e..

J Entitire surface
T.dS. ••.(47)

Also the surface is a two-dimensional quantity, we generally
use double integral, such as

-II F.dS. ..(48)

Since dS—idSx-{-idSy-\-iidS:, hence we have

<I>=
jj

(F^S,+F,dSy+F,dS,). ...(49)

1.10. GAUSS’S DIVERGENCE THEOREM
This theorem states that the surface integral of the normal

component of a vector point function F taken over a closed surface
enclosing a volume V is equal to the volume integral of the diver*

gence of the vector F taken through the volume V, f.e.,

II IIIv

In rectangular co-ordinates

F=Ffl:i+Fi/j+F£k, dV=dx dy dz,

dS^=dy dz, dSy—dx dz and dSz^dx dy.

The equation (50) may thus be written as

..,(50)

dx dy dz^'fSl)

rioKt
this theorem, let us first integrate the second term of

8 d side with respect to y. For this we consider a rectangu-

IIIv (f^ +
dy

Fig. 1.10.
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lar prism PQ with cross sectional area dx.dz and edges parallel to

y-3xis. We thus get
^

i i Iv ^ dx.dy.dz=
|

(x, y^, z)—F^{x, yi, z)^dxdz ...(52)

Here :c, z are the co-ordinates of end P and x, y^y z of the end.

A A

Q, Let Wj, and Wg be the unit vectors along the normals to the

elements of areas dSv and dSQ, the areas where the elementary

prism PQ meets the close surface. The area dS has a projection
A

on the X‘2 plane of value dSy=dx. dz. As np makes an obtuse angle

with the 3^ axis, hence the projection of dSp on x~z plane
A

=(“i.M
3,) dSF=dx, dz~—(f/5v)p.

Similarly for the area dSQ the projection on x-z plane
A

= iiM<i)dS<^^dx,dz={dSv)<^^

Hence the equation (52) becomes

jjjv
dx.dy.dz=

Jj[
iF,dS,h+{F,dS,h ]'

Thus dividing the whole volume into the large number of

rectangular prisms with edges parallel to y-axis and of small cross

sectional areas. Hence on adding all contributions we get equation

(51) as

dx.dy.dz=
Jj|^

(FvrfSv)Q+(FvfifS'v)p ]'

1 ! 1

Similarly we can show that

Wly111

~dy.dx,dz= ||Fvrf5y. ...(53)

and IllH0r

dx. dy. dz=
|

iz.dx.dy= f

-(54)

...(5)

On adding these equations, we get

Iff i
JjjF V dy dz

=
11 .

«

J
dx, dy.dz.

This IS Gausses divergence theorem. It is very useful when
we transform the surface integral of vector function over a closed
surface into a volume integral. This theorem also shows that if

the surface integral of a vector F is equal to the volume integral
of a scalar function P over the volume enclosed by the surface,
then we get

F=dlv F. ...(56)
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l.H. ROTATIONAL VECTOR FIELDS, CURL OF A VECTOR
We have read that for irrotational fields lin^ •

i

fields are known as rotational vector fields.

The curl is an important property for these vector fields Let
us first understand the physical signi-
Jicance of a curl of a vector field.

.,io
^ rectangular

plane ABCD placed in a very small
region of rotational vector field. When
the plane is in such a way that the
vector field is normal to it ie
normal to each side of this plane the
jinc integral along its all sides is

' j" F,.i+ r.,,

+1° F,</l+ F.J,

= 0+ 0+0+ 0=0 . ...(57)
If this plane is rotated to 90°

such that the vector field is parallel
to It, i.Cy to the sides /tB and CD then
the line integralIJl

B

T.dl

1:
F.dl + + _ F.dl

D
F.dl.

...(58)

certain orientation of the are^ for whiS thf r
' a

mum. This maximum line integral at any poin^n"‘'"n'field around a closed curve expressed fnr
^ ^ vector

curl of a vector field at that poin^ u ^he
directed along the normal to the tes?

^ vector quantity
handed screw moves when turned in the sen^rin ^ T t

curl F is defied as
^ " maximum. Hence

clirl F= limit ~
AS^O ...(59)

To understand clearly the curl of a vector •. j.
I.i »s C0„s,der a a„,ll paddle »heel i. ,he pa."„f“he io® o“JS

'
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in a canal. On account of the viscous property of the water, the

velocity of the water layer decreases downwards, it is nearly zero

at the bottom and is maximum at the top. The wheel will thus tura

Canal

Fig* L12*

in the clockwise direction, as shown in Fig. 1.12, showing that there-

is a small circulation of water round about the wheel. The axis

about which the wheel rotates gives the direction of the curl.

Let us find out the curl of a vector field F in terms of the car-

tesian components. Consider a

rectangular area ABCD per-

pendicular to the axis of y,

having sides A-^ aud Az.
(Fig 1.13). Because of the small

sides we can assume that the

numerical value of the compo-
nent of F at the middle point

of any side is the average value

along that side. Let Fa, Fy, and
Fz be the components of vector

F along X', y-, and z- axes res-

pectively at the origion O.

Thus average values along

sides AB, BC, CD and DA
are

z

Fig. 2.13.

(iAz)
J

and -^(jAx)
J

respectively.

As F.dl= [F.+ ®^(-iAz)](-A;c).
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\b [^*+
J

(Ae).

\c (iAz)J (Aa:).

11 [^^+^^(iA^)](-Az).

Hence the total line integral of F along the boundary ABCD

^F.rfl=J^ F.dl+I^ F.^l+|%,rfl

= (9 7^®/02—dFz!dx)Ax/sz.

It is
integral per unit area is (dF^Idz—dFjdx).

direct on '>-'nthey-

funcS'F. Hen2“*
J'-component of the curl of a vector

(curl F)»=OfJ0z-SF./0x)
j,

where j is the unit vector along 3^-axis,

Similarly we have

(curl F), ^(dFJdy-dFJdz) i and (curl ¥),=idFyldx-dFjdy)k.

curl F-=(curl F)^+(curl F)„+(curl F),

9^__^
dz dz dx )h(

dx dy)

as

...(60>

This may be conveniently written in the form of a determinant

curl F= j

0/3 >
Fy

k
0/3r

Fz

Since the vector
vector F may be written

product
as

V XF of the operator V and the

' S~+i g^+k-^]x(F,i+F,j+F.k)

• . curl F== V xF=Del cross F.

aIip
operation is independent of the system of

tbe curl of a vector is invariant.
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The name curl suggests that a vector field F at a point of
space has circulation there. As the curl is associated in hydrodyna-
mics with the rotation of a fluid hence is sometimes called rotation
or simply rot. For any conservative vector field the curl is zero at all
I^Y'ts of space ^ as the line integralfor a closed path is zero for such a
field.

1.12. STORE’S THEOREM
This theorem states that the line integral of tangential compo-

nent of a vector field ¥ around a closed curve is equal to the surface
integral of the normal component of its curl over the surface S
bounded by that curve C, i.e.

ic¥.d\=jB curl ¥.dS, ...(63)

Consider a surface area dS at any point P on the surface 5^

A
having closed boundary C (Fig 1.14 a). If n is the unit normal vector

A
on this area, then dS=ndS and the Stoke’s theorem may also be
expressed as

F ^/1—
11^

n. (cuT\¥)dS.

Let the surface S be subdivided by sets of curves lying on the
surface and joining the points on the curve C so as to form a net
work as shown in (Fig 1.14 b). If we consider the line integrals of F
around the two adjacent meshes we see that the line integrals along

A

(a) (b)

Fig. 1.14

;be common side of the two meshes cancel each other as one has
to travel in opposite directions. In the case of meshes abed and
defe, the common side dc does not contribute to the line integral
and the line integral along abed+Wn^ integral along dcfe==\\nQ
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ixa.t'te £ ,„TS" oT'^

F.^l= £ jF.dl.
^

all meshes .. (64)

and8b ilr L ^ F by infinitesimal vectors Sa

BC, CO ai d dVS F t^F H
^

’ ^ ^i> ^ 2 .
1^3 and F, respectively, then

F.r/1 =
ffi

F.dl !> (“
‘'‘+Jc

^

=Fi.8a+F2.8b-F3.8a-F,.Sb

- 8b. (Fa—Fj)— Sa.(F3-Fi).

•^1+1^ F.cfl

• •(65)

ment
"" " “"«P™'iins » a displace-

SF-( Sar^-I-Sp-;^ +§2 ^
j

yj pdx dy dz *••(66)

and

Hence we can write

F2-F4=(5a.V) F.

Fg—Fi=(ab.Vj F.

Substituting these values in equation (65), we get

...(67)

y F.(il=ab.(Sa.V)F-5a.(Sb.V) F
=[Sb(Sa.V)— 5a(Sb.V)] .F.

Using vector identities

(aXb)Xc=(c.a) b-(c.b)a
^nd a.(b X c)^b.(c X a)— c.(a X bj,

we get

i'F.£/l=[(SaxSb)x V].F

=^(SaxSb)
. (VXF).

D
r

F.

/ 7
c

Ai
/

Ft

Sa

Fig, 1.15.

Putting SaxSb=8S=Area of ABCD, we get

fF.cll=(VxF)
. SS.

Summing these results for all the meshes, we get

...(68)

-.(69)

j F.dl- y
all the meshes
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A

n. curl F dS. -(70) -

Hence the Stoke’s theorem.

Like the divergence theoren

evaluation of integrals.

this theorem is very useful in the

1.13. GREEN’S THEOREM

Green’s theorem can be derived from Gauss’s divergence

theorem as follows. Substituting vector field F as the product of

one scalar <f>
and grad of another scalar </<, i.e., F=^V</i, we get

^ 8y ydz dz J

dx dx dy dy dz dz

=^W+VfV0. -(71)

Hence Gauss’s theorem reduces to

This is known as the first form of Green’s theorem. After

inter-changiog fj> and 0, we have

jj^
...(72)

jjj^
(0V^<^+V0.V^)t/F=

^
(./rV^).c^S ...(73)

On subtracting Eq, (73) from Eq. (72), we get

(<^VV-0V»^) dV=
8
(^V0-0V^).rfS...(74)

This is referred to as the secondform of Green's theorem.

These are of extreme importance in the fields of electrodynamics

and hydrodynamics.

Some Useful Vector Relations involving the vectorV
(u.V) ^-u.(v <i>)

(u.V) r=u.

div (u+v)= V.(u-fv)= V.n+ V.v.

curl (u+v)=V X (u+v)=V X u+V Xv

div div u+u. (grad <f>).

curl (^u)=Vx(^u)= ^ curlu+(grad ^)Xn.
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div (uXv)=v. curl n—«• curl v.

curl (nXv)= (v. grad) a—(u. grad) v+udiv v-v div a.

grad (n.v)=uXcurl v+vXcurl n+(u. grad)v-l-(v.grad)u.

Second order differential operators

div curl u~0
div (grad ^)= V.(V ^)=V»<^==9»^/9^’+0“W+3V/9r .

curl grad

curl curl u=grad div u

Exercises

Example 1. Prove that the four points 4i+5i+k, — (j+l*).

Ji+9j+4k and -#(—i+ j+k) are coplaner.

Let the given vectors represent the points A, B, C and D res-

pectively, then

a= AB=Position vector of B—Position vector of A

=_(j+k)—(4i+5j+k)=—(4i4-6j-l-2k).

Similarly b=AC=3i-l-9i-l-4k-(4i+5i+k)=-i-|-4i-|-3k.

and c= AD=4(-i4-i+k)-(4i+5j+k)=-8i-j-|-3k.

If the points A, B, C and D are coplaner, then vectors a, b

and c will also be coplaner. It is possible only when

a . (bX c)=0

Ox -4 —6 —2
Now a. (bXc)= bsB b^ bz -14 3

Cx Cy Cc -8 —1 3

Hence the points A, B, D are coplanen

Example 2. For a position vector r=ix+j>'+k5!, show that

(a) div r=3,

ib) div (r" r)=(3+n) r",

(c) curl r=0,

(d) curl (r/r*)==0.

[a) We know that

div F.V .F-
(

I
I; +1 4r+kv}
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„ dF^ ,
dF,

,
dFt

dz

In the present case F=r=ix+j>'+kz, therefore

‘i”-|r+^+-|r='+'+'-=‘-

{b) In this case F=r" r=r”(xi+j’j+zk)r

/. div F=div (r” r)=-® ir”x)+~ (r«:F)+ ('"z)

=r''+xnr"~'--^^ +r’'+ynr’'~'^ -~+r’'+znr"~^
dx dy dz

3r”+nr”-^
dr . dr

,

dr
X hj'— +*
dx dy dz

=3r"+nr""^ j^-^+ ^+-yj=3r"+nr" *.

=(3+n) r".

(c) Since curl of a vector field F is given as

curl F_(
aF,

V dy

dF
dz )‘+(-|r

dF
dx

• fdFy _dF,
dx dy

In this case r=xi-f .vi+zk, hence

curl F f dz_

\ 9>^ dz )-{
0x dz

dz dx
0^_^\ k
dx dy

and

Since x, y, z are independent co-ordinates, hence

^ ^dy _dz __dy _dz
dy dx Zy dz dz dx

curlF=0i=0i+0k=0.

(d) In this case

r-— «• - JCi+j>i+ zk
A o o

. curl F=*K(
d_

dz

(^)]
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curl F=i
dy

dr

dz dz

+k
dx dy

8r/5.i:5'^ub/to2i'thirCal„t

curl F 3 i zy yz- (
-

r« I r

+k

)]-i[

--Ifj
r*l r

xz zx

yx _ xy

V (a.r)=a.

Using the vector identity

grad (A.B)=Axcurl B+Bxcurl A+(A. grad) B+fBwc have ' grad) A,

V (•.)-aX(Vxr)+rx(Vxa)+(a.V)r+(r.V)a. ...(0

cX-OS”'
(A.V)B-^. -3B -8S_+^.

dx dy dz ••(«)

In the present case if we assume A=a and B=r, then we have

(a.V)r=fl, 9*-
-ha- +a 0r

dzdx ' dy

=aj+ aj+azk=si.
If A=r and B=a in equation (ii)r then we have

0a ga(r. V)a=x I 0a
,+3' +z0x '

0;)

=0. (as a is a constant vector)
Substituting these values in Eq. (/), we get

V (a.r)=0+0-|-a+0=a.
Hence the result.

(a) grad <f>=id^/8x+j d^/dy-f-k d4>ldz.

j'jX

where ^
fir r 's9* Sr 'dx ^ dx

dz
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As r=(*»+j'*+2*)^'*, hence drldx=2xl2(,x‘+y^+z^yi»=xlr.
dfldy=ylr and drldz^zjr.

• • grad ^(r)=i ^+j^'JL+k0' 2
r r r

d^r d<f>

drr dr

(b) d<t> dx+ dy+ ^ dz=(gTRd (/>). dr.
dx dy dz

Let dr lies along the surface for which ^=const, then obvio-
usly and (grad ^). dr=0. It shows that grad ^ and dr are
mutually J_ to each other for a surface ^==const.

Example 5. Prove the vector identities ;

(/) div cwr/ F=0.

(/) div curl F
dx

(ii) curl grad <^=0.

(curl F)fl. +~^ (curl F),+
dy

d

dz
(curl F),

^
r
dF. __ d _ 9F.

dx L By dz y dy L dz dx

+ d ^dF,
dz L 0;c dy

d*F, _d^F^ 1 d^Fy
dxdy dxdz dydz dydx dzdx

=0 .

dzdy

It means that vectoryieW whose divergence is everywhere zertcan be expressed as the curl of some other suitable vector field Thi
fields whose divergence is zero have their field lines always formimclosed curves or the vector field is solenoidal.

^ jormini

r 0
- I ors»/i J\ I .

1
(//)(curl grad (grad

<f>). (grad ^), ]

r±(m
lSy\dz )

_0^

Sy\dz ) dz

Similarly we can prove that jv-and 2-components are also zero,
curl grad^=0.

It means that fl vector field whose curl is everywhere zem

^RelduT^^
frflAc/i/ af another suitable scalar field Th

the conservative fields are of this type.
potential field. Al
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Example 6. A rigid body is rotating with constant angular

velocity about a fixed axis, if v is the velocity of a point of the body,

prove that curl v=a). Give its physical significance.

Consider a rigid body which is

rotating with an angular velocity co

about an axis OA, where O is a fixed

point in the body. Then any point P
on the body moves in a circular path
about OA with a tangential linear velo-

city V {=a»Xr), where r is the distance

of point P from the fixed point O. Since
the angular velocity w is a vector cons-

tant for all points on the body and can
be written as

o>=a)^i-|-ajtfj+a)jk, hence the com-
ponents wy, w, are independent of
the co-ordinates r of the point.

v= O) X r= (ct>„r—

+

(co^x—
and V X v=2c(>aji“b2a)vj“i“2cozk=2«o.

4
yy

Hence when the rigid body is in motion the curl of its linear

velocity at any point is equal to twice its angular velocity.

Thus we see that if a motion of a rigid body is such that the

velocity has a curl, the ultimate particles of the body are in rotation

with an angular velecity, which is equal to half of that curl. The
motion is described as rotational or vorticaL

Example 7. For a position vector r=ix4- jy -bJkz.- find the

values of (/) grad (l/r) (//) and grad r^.

Since r=ix-l-iy+kr, hence r^=r,r—x^+y^+z^

dr/dx=xlr, dr/dy^^y/r, drjdz^zlr.

Substituting these values in the above relation, we get

and
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grad(i-) y
r

r*

Similarly

grad r^=

Example 8. Prove that curl curl A=grad div A-V«A.
We know that

r

and

curl A»

curl curl A=Vx VxA
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Let us consider only the x component and call it curl ^ curl A

cufi curl A
Zy

dA^

dx
Ml
dy

d

dz

dA X dA

0M d^A d*AX

dydx dydy 0202
+

dz

dU

dx

dzdx

Adding and subtracting d^Axjdx^ in this expression, we get

curl a curl A ^^ 0^ , d’^A

dxdx dydx

0M r

dy

dx

dAv , dAy , dA

dx dy
+

dz

02 0 +
02

0x2 dy^ dz
X

=i |-(div A)-V^(^xi)
ox

==grad3: (div A)— V^C^xi)

Similarly, we have

curl y curl A=gradv (div A)— V'^
(^wj)

and curU curl A=grad 2 (div A)— (Az^)

Therefore the summation gives

curl curl A=grad div A—V^A.

This relation can also be derived by using the identity

aX (bx c)=b (a.c)—(a.b) c.

or V X V XA=V (V.A)-(V.V) A

=grad div A— V^A,

Oral Questions

—

1. Show how three equal magnitude vectors would have to be oriedted if

they were to add to give zero. Can this be done with three unequal vec-

tors ? Two unequal vectors ?

Find the dot and cross products of two similar vectors ?

Why is the work a scalar quantity and the moment of the force a vector

quantity ?

If Operates v when u is assumed as constant, then which of the following

is the correct form

(V . n)v or (n . V)v ?

Find the surface integral of a curl of a vector field when the surface is

closed.
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If two vectors A and B are not parallel in question aA+6B»0, then find
the values of a and b.

Problems—

1. Provethat the line joining the vertex of a parallelogram and the mid-
point of the opposite side trisects the diagonal.

2. Prove that axb™—(bxa), axa=-0 and (a—b)x(a+b)—2{axb).

3. IfA and B are the sides of a parallelogram and C and D are the
,diagooal8,show that

4.

Provethat the components of F in the plane of a and F, along and

perpendicular to a are a and respectively

5. Find grad v, where v=t« and r=-(x2+>2+22
)
1 '2

[mr« -2]

6. Find div F and curl F, where Fngrad
[6(x+>+r) and 0]

7. Evaluate where r-.(x2+>2 -|.22)i/2 .

8

.

Show that the potential function ^c=q(;c2+v2+z2)“i/2 satisfies the
i^place 8 equation.



Electric Charge

and Electrostatic Field

2.1. ELECTRIC CHARGE

)rffact

IS a well established fact that bodies which are not in

contact can interact with each other without the use of an interven-

ing medium. The best known interaction of this kind is gravitation.

In certain circumstances the interaction between separated bodies

can be such that the forces produced on them completely over-

shadow the gravitational attraction. In these cases we say that these

bodies are magnetic or charged. We can show that a glass rod

rubbed with silk will repel the second roc rubbed wiin_TsiTF~

and will attract a Tiard rubber rqd_xubbed-^ith fur. Two hard

rubb^rods'TubT'^ witli tur wiif repel each other. We explain these

facts by saying that rubbing a rod gives it an electric charge and
the charges on the glass rod and on the hard rubber must be diffe-

rent in nature. It is also clear that like charges repel and unlike

charges attract. Benjamin Franklin, American Physicist, named the

kind of charge that appears on the glass positive and the kind that

appears on the hard rubber negative. He also observed -that equal

negative and positive charges are obtained at the same__time by the
rubber on_the one hand and^by the body rubbed on the other.

Elfecfnc^ff^s are not limited^ glass or rubber, any lubstance
rubbed with any other under suitable conditions will become char-
ged. [Now-a-days it is assumed that the matter contains equal
amount of negative (electrons) and positive (protons) electricity. In the

process acquiring the electric charge, a small amount of one kind of
elcctricityjs-lransferred from one to the other body In th is way
oneTody would, become positive and other negatives

Charge is quantized. The. atomic theory_ of mat^r has
shown that fluids (e-.g., water and air) are not continuou^’but are
made up of atoms. Milikan’s oil drop experiment shows that there

is the exact equality in the charges carried by all charged drops.
The charge is written as -ne, where-^ is an integer number. The
symbol ‘e’ is known as electronic charge. It is also observed that
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magnitude but opposite
in sign. No one has been able to detect a charge smaller inmagnitude than the charge of the electron e. In addition the

ri i

arej^nd to be inte-ggrSuffi?les of

charge exislsjn^iFcrete pa^Tff-mtTenha'h' in cont^^rri;.^S;
and:'hence_i?_s^d 'tEbTqllH^edj/^^ The'-basic" packet. o7 qulnt^ni;of charge has fliagiiitude -^A'll charged elementary '‘particles

^nTu
time carry charges of precisely the same magnitude

charge is a deep and universal law of nature. There are two kinds ofcharge quanta. Both have the same magnitude. One is that on

^uanfum ? the proton. Higher theories of

Ege required to explain the quantization of

The quantum of charge e is so small that the graininess ofelectricity does not show up in most of the experiments Forexample in an ordinary 220 volts 60 watt light bulb I 7x lO^®elementary charges (electrons) enter and lelve filament every

matter is allowed to enter or leave the s\ Stem
that no

neither created nor destroyed An eouai n, ,

charges can be

positive and negative is siLltanJausly pJodE^^ "'IThis IS known an conservation of chargl a^nd is'vaI/d°L^th^f^^^f‘^^‘^‘scale events and at the atomic and nuclear level
^ ^ ^

been found. An interestine examnie ^ exceptions have

creation of pair of

mafifnrtude'^tT'onn^ow^ •—=fi—

P

ps?trofl^_were eaua! in

partide \o anti^an^] The reverse nrnJ u- ieuergy-appears in the"W~bft7o gaSlSS^and a positron are brougirr^se to^eac^t^ wjTen__an electroi

This procestrrs known 5s^j«/7n7ar?^ process t'

^ ^ observed
net^iarge is zero both bef^iTand-after ttff '

processes tm
conse^jf event so that charge i

radioactive decay. “?w d°e*ca*^? process\7 are
°

'

U238

SsRa A

disincegralioS Md S8*fOT?be lira and f 'a"®' P'"'"' I"!”"
ia .ho samo as ,ba, pooLm^aTio?! SogrS”'’

I

1
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Charge conservation is also valid in nuclear reactions. Few
examples are

;

2oCa«+iHi->2iSc«+oni

3Li’+iH’->22He^
%

Here we see that the sum of the atomic numbers no. of
protons in the atom) before the reaction is exactly equal to the sura
0^ tne atomic Ambers after the reaction. It means that total charge
remainsTonsian^ or charse is conserved.

The law of conservation of charge is also true for relativistic

motion, in other words we can say that the total electric charge of
an isolated system is relativistically inxaria'nt.

charge. One cannot explain the charge in terms of
any (^fliei known piu|_Terty. In raacsoscopi : chaiging prucess the

number of electrons involved is \ery large and we use a unit of
charge, the coulomb^ The coulomb is defined as the amount of

charge that flows through a wire p. r second if tiiere is a steady
current of one ampere in the wire. In nuclear or atomic problems
or in microscopic processes, the unit of charge is taken as the charge
on the electron, electronic charge^ Cy which is equal to

1.6021 X 10“^® coulomb.

Conductors and Insulators. For the pu-pose of electro-

static theory all subs’unces tan pe divided intt' two main classes :

conductors and insui tors. In conductors electric charges are free to
move from one place to another, whereas in insulators they are
tightly bound to their respective atoms. In an uncharged body there
are an equal number of positive and negative charges.

The examples of conductors of electricity are the metals, human
body and the earth and that of insu'ators are glass, hard rubber
and plastics. In metals, the free charges are free electrons, known as

conduction, metallic or free electrons. But in electrolytes, each mole-
cule of electrolyte separates into+vely and— vely cln'rged parts which
can move independently of each other. Although there is no perfect
insulator or perfect conductor. The insulating ability of fused
quartz is about 10*'^ times as great as that of copper and hence used
as perfect insulator. The concepts of perfect im-ulator and of
pertect conductor are useful in e ectrostatic problems. There are
a number of substances that are neither good conductors of
electricity nor good insulators. These substances are called
semiconductors.

Charge and Matter. Every matter is consisted of neutral
atoms. The atoms are made up of a dense+vely charged nucleus
surrounded by the electrons in the orbital motion. The radius of the
nucleus is of the order of fermi (1 and is about 10“® times

\ <
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smaller than the radius of the outer electron or that of an atom. In
the nucleus protons and neutrons are packed by the strong attractive

forces^ known as nuclear forces. These forces are much
stronger than the electrostatic repulsive forces between the protons.

The forces that bind the electrons of an atom to the nucleus,
the forces that bind atoms together to form molecules and the forces

that bind molecules together to form matter may be described with
the help of Coulomb’s law and the structure of the matter.

2.2^ JgOULOMB’S LAW

Fibre

Charles Augustin de Coulomb performed following experi-
iCnt in 1785 to find how the force varies with the distance between

two point charges. In his experiment, two
light balls were fixed at the ends of a

light insulating rod and the whole
system was suspended by means of a
torsion fibre at its centre of mass
(Fig 2.1). One ball a was given a charge

and a third charged ball c supported on
the insulating handle was brought near

the ball a. The charge on a w'as repel-

led and the rod was rotated and the

fibre was. twisted. The suspension head
was rotated to restore the original

position. This experiment was repea-

ted for different distances between balls

a and c and corresponding angles
through which the suspension head was
rotated to restore the original position

were observed. From these results,

Coulomb gave a law, can be stated as :

(a) The force which two charged
bodies 1 and 2 (say), whose dimensions

are small compared to their separation

(i.e., point charges), exert on one another has a direction of the line

joining the charges and is inversely proportional to the square of
their separation r. z.e..

Fig. 1.1.

1
Foc-i-r,

(/)

where r=r/r is the unit vector in the direction from charge 1 to
charge 2 if the force F is acting on charge 2 due to charge 1 (Fig 2.2).

Fig. 2.2.
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(b) This force is proportional to the product of the charges
on these charged bodies.

®

E qi qi.
(,7 )

(c) This force acts as a repulsive force when qi and q^ have
same sign and as an attractive force when two signs are opposite.

id) The force between any two charges is independent of
the presence of other charges.

Combinning these relations we have

Fa:
qi 92

r.

It is better to write F, instead of F as we are concerned with
ine force on charge 2 due to charge 1. Hence the force F, on
charge 1 due to charge 2 will be— Fa-

.u
1“ Gaussian system of units the unit of charge is thus definedso that upon a quantity of electricity equal to itself, at a distance
‘*,f*®^**

a force of 1 dyne. In this case constant of pro-
portionality for the charges in vacuum or air becomes unity. In SI

paH* r® proportionality is usually written in a morecomplex way as 1/ 47ceQ. Thus we have

4ne. r* r. (2>

° ‘constant c,, known as the permit^

hand side equal to the left hand side. Thus we have
^

£0=8.85418 X 10-»a coulVnt.m’“ or l/47t£o=9x 10'> nt.mVcoul^.

nn.
present, the force exerted on any

given by adding
vectonally all the forces obtained by using Eq. (2).

^

Fl— Fi2+ Fi3-1-Fi^+.
(3)

where F12 stands for the force exerted on qi by 9,. Thus we have

18 ]
...(4)

iai
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A A

Here the unit vectors and ris have the directions of the lines from

g, to and to qi respectively.

For the force on due to a number of charges, we may write

17, LEM* ^
47ce, iru* .

This is just the superposition principle for forces.

•••( 5)

Let us consider situations where the charge is spread over a

jegion instead of being concentrated at particular points. To cal-

culate the total force on qi, let us consider the charge as made up

of small charge elements and then the forces due to each element

dq is added vectorially. As the charge distribution is continuous,

hence the summation is replaced by integration. Thus we have

Fi
1

\44ite0

A

r
4ns,

...(6)

where r is a variable unit vector that points from each charge

clement toward the location of charge q. If the charge is

distributed over a volume dv, this equation may be written as

Fi=
1

4nt,

A

r
...(7)

where q is the charge density.

Coulomb’s law applies to point charges. In the macroscopic

aense a point charge is one whose spatial dimensions are very small

compared with any other length used in the problem. It also applies

to the interactions of elementary particles, such as electrons and
protons. It is found to hold even for electrostatic repulsion

between protons inside the nucleus, however nuclear forces domi-

nate over this repulsion. The spontaneous emission of a-particles,

breaking up of the nucleus into two large fragments, presence of

more neutrons than the protons in the hea’/y nuclei are the Cou-
lomb’s repulsion effects. We do not know whether this law holds for

-very large astronomical distances or not.

Coulomb’s law has the same form as Newton’s law of gravita-

(ition. The analogy between these laws is given below :

Goalomb’s Law

(1) It is based on expert

mental observations.

Newton^s gravitational law

It is based on speculations con-
cerning the fall of an apple
towards earth.
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(2)

Force is directly pro- Force is directly proportional to
T»ortional to the product of the product of masses,
charges.

(3) Force varies inversely
as the square of the distance
between two charges.

(4) Force between the

Force varies inversely as the
square of the distance between
the masses.

Force between two masses

charges F=
1.2

F=G

(5)

Force is repulsive when Force between two masses is
cnarges are of similar nature always attractive,
and is attractive when they are
unlike.

(6)

Force between any two
charges is independent of the
presence of other charges.

Force between any two masses
is independent of the presence
of other masses.

(7) is constant for a free
space.

G is a universal constant.

(8) €q depends upon units
of force, charge and distance.

2i-«>ECTRIC FIELD

G also deoends upon units of
force, mass and length.

The gravitational force can be explained by assuming that
every point in space near the earth is associated with a field, known

gravitational field. Similarly the space surrounding a charged
body IS associated with a field known as electric field.

If a charge is placed at any
point, it sets up an electric field in the
space around itself. This field is indicated
t>y the shaded region in Fig, 2.3. If a
Charge is placed in the field region of
c large qx^ the former will experience
a force F.

\

In this way the
intermediary role in the
the charges.

I «
* * *

» . I

s Os' wv///,

field plays an
forces betvveen

\'':o
s. -w ^ -

Fig, 2,3,

y

for coStScefls ^ (assumed positive

wherf*
placed at any point in the region of any chareewant to calculate the electric field strength. If this twt
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charge experiences a force F, then the electric field intensity or
strength E at that point is defined as

E=F/^o*

The direction of E is the direction of F and its unit is newton/
coulomb. We must assume a test charge as small as possible so
that it will not influence the behaviour of the primary charges that
are responsible for the field to be determined. Thus Eq. (8) should
be replaced by

£_ Limit
-(9)

Actually the test charge is fictitious. We merely ask what
would be the force on it, if placed at the observation point. The
requirement that the test charge be vanishingly small compared with
all sources of the field limits the practical validity of the definition,
i.e, the definition is suitable for macroscopic phenomena only.

The force experienced by test charge placed at a distance r
from a point charge q can be written at once from Coulomb’s
law as

F=—

r

4kZo r'^

Limit

qo-^0 4ne, V r j

Its direction is radial from q pointing outward if q was+ve. It is
inward if q was—ve.

If we consider co-ordinates of the points instead of absolute
distance between the charges, then Eq. (10) will become

47ZtQ
j
X— Xl

I

* "*(11)

where electric field is calculated at point X due to a point charge a.
placed at point xi and

| x-xi | is the absolute distance between
these points.

^

ATION OF ELECTRIC FIELD STRENGTH2 .4 .

uud E for a group of point charges, we first calcnlntp. f
to eaclvtharge at the given point as if it was the only Sli nfecent
and then add them vectorially, ^ present

n

/=1 ''ot*

A

roU
E=Ei+Ea+E8+,.,
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where ro< is the vector from the i'* charge in the svstem to thfpoint in space for which E is being calculated
^

be coLSedtv continuous, the field strength can

Sd iXratiS^ thl
infinitesimal elements dq

elements.^
' ® ^ contributions due to all the charge

dE^ M
^TTEo j r

dq
2

A

r ...( 12 )

''cctor pointing fromspace for which E is being calculated.
dq toward the point in

tude but oppoMte^iT*smns
c*cctric charges, equal in magni-

strength due fo these chS in th“^^

trie field of sensftle main? ^
an elec-

dipole.
:^

combination of two charges is termed as e/ectr/c
/

the perpendkul?r biiector^of the**li?p^-^^'^
^ ^ distance along

tude , placed at a

-(13)
E=Ei+ E,

From Eq. (10)

Fig. 2.4.
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The vector sum of Ei and E, points parallel to the line joining:

+9 and —q and has the magnitude

E=2Ei cos *

2X
i

47te.
^ Va*+r2

* 47teo(fl*+ra*)*'*

a 2aq
...(14)

If Ta ^a, we can neglect a in the denominator and the above

equation thus reduces to

E=
(2a)(q) _ _1

47rer,*

...(15)

0 'a

where p=2aq, the product of the magnitude of the charge q and

the separation 2a between the charges and is known as the electric

dipole moment. Thus we see that the electric field strength due to

dipole at distant points along the perpendicular bisector varies as

l/rs. whereas for a point charge it varies as l/r^ only. Its direction

is opposite to that of dipole moment which is +ve in the direction

from— ve charge to +ve charge.

The electric field strength E at a point P at a distance rj from

the centre of the dipole along its axis is given by

E=Ei-|-E2.

The resultant vector E points parallel to Ei and antiparallel

to Ea, as Ea is smaller due to the greater distance of— i.e. along

the axis of the dipole. The magnitude

1

[ (ri-a)^

4ar,
...(16)

0 l_ v*l J (^1^-

As in a dipole the distance between two point charges is neg

ligible in comparison to the distance n, i.e,, a-^n, hence

2q(2a) _ I 2p
.••(17)

Its direction is along Ei, i.e,, along the direction of dipole

moment. It is also inversely proportional to and proportional

to the dipole moment /?.

For the calculation of electric field strength E at point R
having polar co-ordinates r and let us resolve dipole moment p
into two components, one parallel and other perpendicular to OR,
the line joining point under consideration to the centre of dipole.

The field due to the component p cos B is equal to 2 p cos Bf

and the field E2 due to the component p sinfl is equal to

p sxnBfAm^^ which is perpendicular to the former. Hence
magnitude of the resultant field E is given by

_ PE=
47:e/3

4 cos^tf+sin^^ ““_ P
47rSor*

V 1+3 cos*0... ( 18)
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Its inclination to OR is given by

tan 4
2p COS0/47t£^^ * ...(19):

(6)>G&arged Rod. Let us consider a uniformly charged rod
whose/line^'Chargc density X (charge per unit length) is constant.
We wish-t6find the electric field at point P due to this rod. Cou-
lomb*s law cannot be applied directly in this case as it applies only to
point charges. However we can imagine the rod to be divided into
a large number of small segments, so that each segment v/ill act ae
a point charge. Coulomb’s law can be applied to this segment*
If A X be the length of the segment at a distance x from point

Fig. 2.5*

which is along the length of this rod (Fig 2.5). The electric field due
to this segment at point P is given by

It is along BP direction. Since the fields due to all segments
of the rod are in the same direction as A E, hence

-(20)

If A^ is sufficiently small, we can replace the sum by an in-
tegral, thus we get

7, dx ^ X r-fl

J-(a+L)47reQ J-(fl+L)

Fig. 2.6.
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To find the electric field at a point to one side of the rod we
can not write relation (20), as due to each segment of the rod
will point in a difierent direction (Fig 2.6). The y—component

AEy=AE cos 6,

As all the ^'“components are in the same direction, thus

AE cqs6
XAxcos$ fi'H-o A dx cos 0S ^Axcos$ r

47rSor^ "J Ant,

Unfortunately, there are three variables {x, r and ^). To con-
vert in one let us use the relation and cos 6=^blr.

/.
I

Xb dx \b
Antr. Ant,

Ld

L+a
...(22)

The X—component of E can be obtained in the similar way.

AE sine
L+a xdx

4neo

1

4ne. +
1

(a^+b^)i/2 ]
...(23)

This relation shows that E^=0 for a=— Ljl or on the points
lying on the perpendicular bisector of the rod. For these points,
the value of A^'® due to the left hand segment cancels the AEa due
to the right hand segment at the same distance.

Another interesting property of the result will be obtained
when point P is very far from rod, i.e., In this case

_ _ q
Anzn b^ Ane^b^

and £'a.=0 •..(24)

This relation is same as due to a point charge <7(=AL) It is

from1a?’away
^ ^

In the special case when the rod is of infinite leneth the fieldcan be obtained by integrating with in the limits x’=—oo toJC=+ oc and the result will be
umiis x oo to

ing a

E^=^\l2ntjb and £’,=0.

ed Loop. Consider a circular
m charge A per unit length.

...(25)

loop of radius a carry-
It is very difficult to
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compute E at any point in the

space, however easy at points
on its axis. Let us divide the
loop in very small segments so
that each segment can be assu-
med as a point charge. The
electric field at a point P on
the axis of the loop at a dis-

tance X from its centre due to
the charge on the segment of
length 8/ (Fig. 2.7) is given by

A r* I

- _

Fig. 2J.

4nB.
o/-

Its direction is along the line from 8/ to point P. The contribu-
ions to E of the various parts of the ring vvill be in different direc-

tions. The y-component cancels with the contribution due to
the oppositely placed element of the loop and the net ;^-component
is thus zero. The resultant field E will therefore be

X dl
cos 6.

Using relations and cos 9—xlr, we get

X X r .. X x.lna

47te(, {a-+x^fi‘^

qx

r (a^+x^)^ /2

(as ^=27rflX) ...(26)

fieldyjtt a

bution of

At x= oo, the field will thus be same as due to a point charge.

nfinite Plane Distribution of Charge. Let us find the
int P, a height z above an infinite plane distri-

charge density a. For this,

let us consider a charge ele-

ment A*5 at any point on the

plane at a distance r from
point P with the co-ordinates

X, yy 0. (Fig 2.8).

cnarge of uniform

Hence field due to

element AS is given by
this

AE=:
1 <tAS

4m. 2

AEz
4tzz

0

All

Fig, 2.8.

the

(JzAxAy
47zto(x^+y^+z^fl^^

components along the 2-direction are added
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while perpendicular components are cancelled due to the symmetry
of the plane of infinite size. Hence the total electric field due to

the infinite plane of charge

47re,

4T:e,

+00

00
dy

2z <T

y^+z2 \ 2e,
..-(27)

Thus we see that the field strength at a point outside an
infinite plane distribution of charge is independent of the distance

z of P from the plane and is in the opposite direction on the other

side of the plane and hence suffers a discontinuity at the plane.

The above relation can also be obtained by dividing the plane
in circular rings. We leave it as an exercise for the students.

Tfr^harged Disc. Let us calculate the field strength on the

axis /T>f a disc of radius R, at a distance x from its centre O. For
this let us divide the disc into annular rings. The field at a point P
(Fig 2.9) due to charge element on the annular ring of radius a
and of thickness Sj is given by

AE J.
Ant,

r.

Its component along the
axis of the disc or along the x
direction

1

47te,

erSj X
2

For reasons of symmetry^,
the total field is along x-direc-

tion and is obtained by adding vectorially or by integrating. Assum-
ing that the surface density of charge ff is a function of the distance
from the centre of the disc, i.e,,a=ba, where is a constant of
proportionality.

1 R xba

Jo I 1 1.'
da

t[
If the surface density of charge «r is constant, then

R
I (28>

" 2^[
'

4Tre

X lizada

(x^+a^yp

+ R2)l/2 (29>
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OF ELECTRIC FIELD ON A POINT CHARGE
[enforce F on a charged particle of mass m and charge q due

to ^ electric field of strength E is given by

F=^E.

This force will produce an accelera^on

particle, given by v-

a=F/m=(^//M)E.

...(30)

in the charged

...(31)

This acceleration is of charged particle placed, not of that due

to which the electric field E is. For example, the earth’s gravita-

tional field can not have any effect on the earth but only on a

second body, say a stone, placed in that field.

2^;x^INES OF FORCE
^^When the vector E is known for all points in an electric field,

the field is completely specified. The direction and magnitude of

field at any point indicate how a small charge would begin to

move if put there. By following this direction from point to point

curves are obtained. These are termed as lines of force. Thus the

line offeree in an electric field is a curve such that the tangent at any

polrtTOTrit gives the- direction of the resultant electric field strength at

that point, f This is also the path on which a test charge will tend to

move, iffree to move.

These Hoes are imaginary, their existence can be shown by
sprinkling 'saw dnstoor gypsum salt in the electrostatic field. These

particles acquirtretrarges and place themselves along the lines of

force; The properties of electric lines offorce are^

1. No line of force originates or terminates in the space

surrounding a charge. Every line of force is a continuous and
smojoth curve originating fro3i a positive charge and ending on a

negative charged ^ .

2. The tangef^t to a line of force at any point gives the direc-

tion of E at that point.

3. They do not pass but leave or end on a charged conductor
normally when the charges on the conductor are in equilibrium.
Suppose the lines of force are not J. to the conductor surface. In
this situation the component of electric field || to the surface would
cause the electrons to move and would therefore give rise to a cur-
rent. Since there is no current on the surface, hence lines of force
are always J_ to the conductor surface.X

4. Lines of force never intersect. If it happens then we say
that at the point of intersection the electric intensity is zero, other-
wise it would have to be tangential to two different curves at the
same instance which is impossible.
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5, The number per unit area crossing a surface at right angle
to the field direction at every point is proportional to the electric
intensity. Hence the lines of force are closely spaced where the
intensity is large and are widely separated where the intensity is
small. ^

6. They repel each other in the case of two like charges.

Fig. 2.10.

The direction of lines of force in two cases are shown in
Fig. 2.10.

We define unit field (1 NIC) arbitrarily as corresponding to
unit density of lines of force (one line/m^). To determine the num-
oer of lines per unit charge, let us draw a spherical surface of radius
r around the charge q as its centre. The electric field F at the
surface is given by E=ql4nsgr». As the density of lines of force is

the total number of lines of force originating at q and cross-
.^P^^^l'^^l/urface will be 4nr^E=qlz„. Hence the number oflines originating from a unit charge is Ijt^.

.

linss of force are very useful as they give qualitative
picture of the electric field distribution. There is a simple connec-

f
inverse square law. We know

that the density of lines at r meter from an isolated charge q is
. As the area of the spherical surface subtended by a^bundleof lines originating from the point charge is four times greater for a

H
^

“c V away than for a surface at r meter distance. Thusthe density of lines of force at 2r meter is just one quarter that at r
meter in agreement with the value from inverse square law
2.7. SOLID ANGLE

ancle
analogue in three dimensions of the usualangle in two dimensions. In two dimensions, the unit angle is the
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angle subtended by an arc of length equal to its radius and is known
as radian. In three dimensions, a given area on a sphere subtends
a certain solid angle at the centre. The unit solid angle is that
subtended at the centre of a sphere by an area r* and is known as
steradian. Since total surface area of the sphere is 47rr^, hence the
total solid angle subtended at its centre is 47r steradians.

iT. T 1

In Fig. 2.11, and dS’ sub-
tend the same solid angle. Thus
the solid angle subtended by
any surface dS at a point O a
distance r away is given by

where dS cosQ {~dS') is the

projection of the surface dS
perpendicular to the radius

vectorf^omtlie^oint O.

LAW
Consider a single positive point charge q surrounded by a

closed surface of arbitrary shape, as shown in Fig. 2.12. The electric

Fig. 2.11.

Fig. 2.12.

intensity E at every point of the surface is directed radially outward
from the charge. Let us consider any sufficiently small area dS of
the surface for which E can be considered to have same magnitude
and direction. If B be the angle between E and the outward normal
to the surface at any point of this area. The product the com-
ponent of E normal to the surface, and the area dS is

En dS=E cos 0 -X cos 6 dS.
^tcsq r

As dS cos 6lr^ can be replaced by the term solid angle dot
subtended at the charge q by the area dS^ hence

£„ ^/5=(g/47tfo) dw.
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If the surface is continuous we can integrate both sides of this
equation over the entire closed surface and so we have

a I
En dS=—~ (pdct).

47teo J8

Regardless of the shape or size of the closed surface^

f rfa>=Total solid angle surrounding the charge

8
E„ dS=-r^- 4^:= -^-

47reo Eo

As the product E„ dS=E cos 6 dS=E.dS, hence we have

I, E.dS=qlsg. ...(33)

If the point charge is negative the field E is directed radially
inward, the angle 6 is greater than 90° or E„ is negative. The
surface integral is thus negative. Hence the form of Eq.(33 ) is

correct whatever be the sign of the charge.

When the point lies outside the surface, every elementary

cone from O cuts the surface
an even number of times.
Let us draw a cone of solid
angle dco at point O, inter-
cepting areas BSo, SSg,

^*^5 and at points A,
B, C, £>, E and F respectively.
The corresponding outward
normal over these areas are
shown in Fig. 2 . 13 . The
angles 6

^ and ^5 are obtuse
and ^a* ^4 ^nd 6q are acute.
Thus

cos 01=
8^2

cos ^2=etc.
to

S5i cos dro
; 85„ cos dco

; ...etc.

face imegral is^^

from these six (say) areas to the sur-

Ei cos cos 0a SS'a+f, cos 0, 85'g+£'4 cos 0^ 854+...

=4^^* (~r,^dc.)+..

~
4Tceg ^~‘^‘^+dco-dco-\-d(o—d(o+dco] = 0. ...(34)

Po ‘Closed surface is zero hence the

-ve or'ze^o
‘ ® the charge inside the surface is +ve.
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Any arbitrary distribution of charges can be assumed as a

system of point charges. We can use Eq. (33) for each point

charge and sum over all charges. In this case charge q is equal to

£g or more accurately Jp dV. Thus

E.^/S==— [
9dV. ...(35)

^0 Jv

This is the equation which expresses Gauss’s law : The surface

integral of the normal component of electric field E over any closed

surface in an electrostatic field equals y/e© times the total charge

enclosed by the surface.

The left hand side of Eq. (35) is called the flux of E across

the surface and is represented by Thus

The term flux is borrowed from hydrodynamics, where a simi-

lar integral in which E is replaced by the -velocity vector v gives

the net flow of fluid across a surface. The Gauss’s law can now be

stated as : the outwardflux of electric field across a closed surface

equals I/sq times the net charge contained in the volume enclosed by
the surface.

In terms of electric displacement density D (to be defined

later), which is equal to EqE, the Gauss’s law can be stated as ; the

net outward electric displacement through a closed surface is equal to

the net charge contained in the volume enclosed by the surface^ /.e.,

isD.dS^ivpdV, ' ...(37)

Gauss’s law can also be written in the other form by using
divergence theorem §& . dS=iv V . D dV,

as Jv V ,DdV=iy9dV. ...(38)

This holds for any volume whatsoever. As the volume consi-
dered is reduced to an elementary volume, this becomes the point
relation

7 . D=p. ...(39)

i e., at every point in^^a medium the divergence of electric displacement
is equal to the charge density at that point.

''^Graphical Interpretation of Gauss’s Law. For a flow
field the flux is measured by the number of stream lines that cut
through such a surface. As the number of electric lines of force
per unit area at right angles to their direction is proportional to E,
the surface integral of E over a closed surface is proportional
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to the total Dumber of lines of force crossing the surface in an out-
ward direction. The total number of lines of force is also propor-
tional to the net charge within the surface.

For closed surfaces 0 is positive if the lines of force point out-
ward everywhere (E is outward every where, ^<90® and E.t/S will

be positive) and negative if they
point inward (E is inward every
where, ^>90® and E . dS will be
negative). Let us consider two
equal and opposite point charges
and their lines of forces as
shown in Fig. 2.14. From the
statement just given, 0 is positive
for surface and is negative
for surface Surface S4 en-
closes both charges. The net
number of lines of force cross-
ing in an outward direction is

zero and the net charge inside
the closed surface is also zero.
Similarly in surface number
of lines of force in inward dire-
ction is same as those in out-
ward direction or the net num-
ber of outward lines offeree is

zero. The charge inside this sur-
^2ce is also zero. In this way it

law is correct whatsoever be the charge inside

Fig, 2,14.

is clear that Gauss’s
the closed surface.

r A%G

LIGATIONS OF GAUSS’S LAW

,

Gauss’s law does not provide expression for E but provides

in such a way that the surface integral may be replaced by a presetof which E IS a factor. Let us discuss few simple cases :

*
O' .J 1

® electric field due to a point charge
IS everywhere radial. Its magnitude is the same at all points aMhSsame distance r from the charge. Hence we select gauLan surface
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§s E . dS=§BEndS=^ES=4nr- E.

But from Gauss’s law it

should be I/eq times the total
charge inside the gaussian sur-
face. Hence

or

4nr^E=gle^

E

47ce ra
...(40)

Fig. 2.J5.

on the point charge if placed on this surface,
i.e., at a distance r from point charge q is then

The force is acting in radially outward direction, hence can.

be represented vectorially as t ...(41 )
It is nothing but Coulomb's law.

uniformly charged

everv nnint ic

^ charged to q units, the charge density p at

as thft f
P°'nt P has the same symmetry

bv drawing a ron
J^bus we can construct gaussian surface

poin Zll u
^"“tre O. At all

Ss dire?don is Srn® h®
of electric field is the same andKS airection is perpendicular to the surface. Thus

§3 E.dS=§s EndS=E47zr^ and from Gauss’s law

47ur2£_ ^
or E 1

'0 4;cEo r

field at any external point due to a uniformly

ceSr' « conceitrated

1
2 ...(42)
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At the surface of sphere r=R, the electric field

E _J i
47te„

...(43)

For the field inside the charged sphere let us draw gaussian

surface of radius r{<R), as shown in Fig. 2.16 (b). Thus

E.dS=js EndS-=Anr'^ E

and from Gauss’s law

4jir^£=g7®o»

where q' is that part of charge which is with in the sphere of radius

r. The part of q that lies outside this sphere makes no contribution

to E at the surface of sphere of radius r. If p is the volume density

of the charge which is constant, then

Trr^p nr31 _

’Anr'E (i) or E
1 qr

47ce„ R
In vector from

47teo jR
•»{44)

From Eqs (42), (43), and (44), it is clear that the electric field

due to a uniformly chaic.d sphere at the surface is maximum and is

zerarjt th.: centre [Fig. 2. 6 (c)).

, (C) ^liJsolated uniformly charged spherical conductor.
In an isolaied charged sp lei icnl conduct t any e\ e^s charge on it

is disiri''uted uniformly ov.r its outer su'fiCc and there is no charge
inside it. H-nce ihi'i problem is ^ame us th: t of charged splierical
sh'll or hollow sphere. As in the previous c i>e, the field at exter-
nal p '’inis h.is the sanu' svmnvvfry as that of a point charge so we
can consiriict a gausM m s j fjce t'f radius r> R. The elecftic inten-
sity calculated, as in t ie previous cas.‘, is civeu by the relation

\

47r£o T2
» ...(45)

It is same as due to the uniformly charged sphere or the poi
-barge of same magnitude if placed at the centre.

At the surface r=/?,

£= ^

...(46)
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At all points inside the charged spherical conductor or hollow
spherical shell, electric field E=0 as there is no charge inside such
A sphere.

(Pp^lharged cylindrical condactor of infinite length.
If the cylinder (say a wire) is long and of radus R and we are not
too near to either end, then by symmetry the lines of force outside
the cylinder are radial and perpendicular to its surface. The electric
field has the same magnitude at all points at the same radial
distance. Let us draw an imaginary co-axial cylinder (a gaussian
surface) of length / through any point at a distance r from the axis
of the cylinder as shown in Fig 2,17. Lines of force are parallel
to the circular caps, hence there is no component of electric field
normal to the end faces (the circular caps). Thus flux through
these faces is zero and the total flux is due to curved surface only.
If X is the charge per unit length, i.e., linear charge density, the
charge with in the gaussian surface will be XL Thus for the curved
surface

^ j E. d/S=| j Eds = Elnrl

From Gauss’s law

or E—Xllnt^r, ...(47)

If the charge is distribuu-d
throughoui the volume and
charge dens' y is p, then

lizrl E—^{nR^l)I^Q

or E=oR^l2z^r.
...(48)

The electric field inside the chirge i c\Iindcr will be zero if
The charge IS on i\s surface only, as net
t-harjo jii the g.i'issian surUc: nrough tliis

point is z.TO. Tae c.i>e is d lL-reni'' whjo
the eL'etnc charge disir-Uit-.i a iTonnlv
wi ii in the cyltnd-r of r.i Juis R. To fi id E
ar an inner point }\ a dis’ance r ap.ii t i'loiii

the aX'S of :he cvhiuler, let u> draa' a cans-
S! in surface parsing thro jgh l\ which" is a
cyt-nder ol length / and of radius r
(Fig 2^^18), As the flat surfaces do not con-
tribute to the flux and th - flux is due to the
curved suTace tor which E )s_L to the sur-
face or

j| to the surface vector dS, Hence
from Gauss’s law we have

Fig, 2.18.

f B E.dS=f s EdS=E
The charge g' inside this gaussian surface =7cr*/p

E27cr/—Tcr^/p/e^, or i&=rp/2e^.
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Thus the electric intensity at a point inside an infinite
uniformly charged cylinder is radially directed and varies as the
distance from its axis. At r=J?, relations (48) and (49) give the
same result. The field decreases at points outside.

Here we see that the electric field due to a charged cylinder
does not depend upon its radius, hence we can say that it is same
as though the charge on the cylinder were concentrated in a line
along its axis. It is right to state that the electric field so calculated
is due to the entire charge on the cylinder although only a portion,
of total charge is used when we apply Gauss’s law- We can very
well understand that the existence of the entire charge on the
cylinder is taken into account indirectly by considering the
symmetry of the problem. If the cylinder is of small length we
can not conclude that the field at one end of cylinder is same as at
the centre or the field is symmetric. It means that the lines of force
are everywhere not perpendicular to the cylinder. In this way tha
entire charge is used indirectly by taking field symmetry.

(E) Infinite plane sheet of charge,
portiom ot a^fiat thin sheet, infinite in size

witl^he constant surface charge density a.
By symmetry, since the sheet is infinite, the
field must have the same magnitude and
the opposite directions at two points equi-
distant from the sheet on opposite sides. E

To solve the given problem let us draw a
cylinder A (gaussian surface) with one end
on one side and other end on the other
side and of cross sectional area S, No lines
of force cross the cylindrical wall, /.e., the
component of E normal to curved surface
is zero. Thus the surface integral ofE. dS
over the entire surface of cylinder is reduced to
due to side surfaces. Hence Eq. (33) becomes

Fig. 2.19 shows a

Fig. 2J9

the surface integral

• •

E.</S=9 /eo or EdS+j)^EdS=GSlto.

2ES=aSlEq or £« a/2en

.

Thus we see that the magnitude of the field is independent of
the distance from the sheet. Practically an infinite sheet of charge
does not exist. These results are correct for real charge sheets if
Joints under consideration are not near the edges and the distances

the sheet are small compared to the dimensions of sheet.

J (F) Infinite charged conducting plate. When a charge is
given to a conducting plate, it distributes itself over the entire outer
surface of the plate. The surface density of charge a is uniform and
is the same on both surfaces if plate is of uniform thicknses and of
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the
infioite size. The electric field at any point thus arises fro
superposition of the fields of two
sheets of charge, one on each sur-
face of the plate. By symmetry it

is very easy to say that the field is

perpendicular to the plate and is

in outward direction if the charge
on the plate is positive and uni-
form. Draw a cylinder through
any point P, as shown in Fig. 2.20,
normal to the plate surface and
cross sectional area S. The other
end face ot the cylinder lies inside
the conductor. This face does not
contribute to the flux as the field
inside the conductor is zero. Curved surface of the cylinder also
does not contribute to the flux as E is parallel to the curved surface.
Thus the only face is the outside end face which contributes to the
iiux as E IS X to this surface. Hence from Gauss’s law

Fig. 2.20,

dS= qlzg otS

• 4 E=clea. -(51)

1 .
Jhis result shows that the field due to charged conducting

plate IS twjce the field due to plane sheet of charge. It also has
.5ame limitations.

(G) ctric

Fig. 2.2L

intensity between oppositely charged
parallel plates. When two
plane parallel infinite conduct-
ing plates, separated by a dis-
tance, are given equal and
opposite charges, the field is
uniform in the space between
them. There is a small quantity
of charge on the outer surfaces
of the plates and a certain
spreading or fringing (edge
effect) of the field at the edges

can assume
fringing negligible as the plates
are of the infinite size. Thus
the field between plates can be
taken as uniform.

and let the otherTnd oV*th1^cvl^nd^e^T^
*wo plates

SPlale and crossing an S'a^i ?hro-M
' “"'‘“'"S6 au arcd me problem IS same as with an
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infinite charged conducting plate and the electric field at point P is

thus given by

E O’/*®. ..-(52)

To find the electric intensity at an outside point draw the
cylinder through the point Q whose second end face lying on the-
first conductor. It is also clear that the surface of the cylinder
contributing to the flux is the end face passing through the point Q.
Hence from Gauss’s law

j)^
E. EdS=ES={aS-aS)lz^

or
/ ...(53)

The electric field at any point due to this system of plates may
be written as the superposition of the fields due to infinite plane of
sheets of charge. Therefore at point P, the electric field

E=Ei+Ea or E=^E^+E^
•• E=al2 «o+<y/2£o=ff/so.

For point Ej and E2 are antiparallel, hence the net field

E=0.

Thus the electric intensity due to two oppositely charged infinite
p anes s at any point in between the planes and is zero for all
external poi^s*

-ulomb s theorem. Consider a charged conductor
?gujar shape. In general, surface charge density will vary

^ surface 85
. let us assume it to be a

consfant. say ff. Let us construct a gaussian surface in the form of

a cylinder AB of cross section 85, one
end face of which is inside the con-
ductor and other passes through a
point P outside the surface close to
it, as shown in Fig. 2.22, The end face
B does not contribute to flux as E is

zero everywhere inside the conductor.
The curved surface also does not
contribute to the flux as E is always
normal to the charged conductor and
hence parallel to the curved surface.
Thus the only contribution to the flux
is through the end face A which is out-
side the conductor. Thus from Gauss’s-
law

Conduct

Fig. 2.22.

is E.dS=#j EdS=ESS=

E==al*a.or
...(54>>
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This agrees with the results already obtained for spherical.
^Imdrical and plane surfaces and is known as Coulomb^s theorem.
This theorem states that the electric intensity at any point close to
the charged conductor is I/sq times the surface density of charge on
the surface.

TRIG FIELD AND CHARGE IN CONDUCTORS
Remembering that the conductors possess free electrons. If

a rpultant electric field exists in the conductor, these free charges
will experience a force which will set a current flow. When no
current flows, the resultant force and the electric field must be zero.
Thus, under electrostatic conditions, the value ofE at all points
within a conductor is zero. This idea, together with the Gauss’s
law can be used to prove several interesting facts.

(/) Consider a charged conductor carrying a charge Q and no
currents are flowing in it. Now consider a gaussian surface inside
the conductor, everywhere on which E=0. Thus from Gauss’s law

§sE,dS=^iljeQ) Eq,

set Eq=0 as ...(55)

Thic charges inside the gaussian surface is zero.
taken just inside the surface of the conductor,

condnt^t^^
charge on the conductor must be on the surface of the

chnro^
other words, under eleArostatic conditions, the excess

on a conductor resides on its outer surface.

Goussion
surfocc 4

Gausston
Surfoce 6

Fig. 2.23.

T
a charge Q suspended in a cavity in a conductor

caJity).
gaussian surface A (within; the

§sE . rfS=(l/e„) i:q=Q/f,.

ducto?°E-o"nn inside the con-

fsE . <fS=(l/ej) gives

...(56 )<
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This concludes that a charge of —Q must reside on the metal
surface of the cavity and thus the sum of this induced charge —Q
and the original charge Q is zero. In other words, a charge Q sus-

pended inside a cavity in a conductor induces an equal and opposite
charge —Q on the surface of the cavity.

(m) The same line of approach can be
field inside the cavity of a conductor is zero
pended in it.

used to show that the

when no charge is sus-

(iv) As field inside the conductor is zero, the lines of flux com-
ing from Q cannot penetrate into the metal and must terminate on
the surface of the cavity. Since lines of flux terminate on negative
charge only, hence an equal negative charge must be induced on the
surface of the cavity.

ELD INSIDE A HOLLOW CONDUCTOR

X Let us calculate the field at any point C inside a uniformly
charged hollow sphere (spherical shell). The field at point C is
obtained by taking the vector sum-
of all the contributions at this
point. Draw through C a double
cone of infinitesimal solid angle
i>w cutting out areas dS^ and dSi
of the spherical shell at distances
ri and rg from point C. From the
properties of solid angles, we know
that

O) =ai=«s=^
dSi cos B

2

dS^ cos $2

xieht
angles, the angle between the surface and the

Tight section of the cone, 0, and 0, are equal, hence

ads^

If the inverse square law holds, the components of the field at

...(57)

C are

1 adS,
and

47te„

1 adS.
•0 M - -

and are in opposite directions. Thus we see that A P anH a p

po^nt C d^^o°' the^ mrtkPr*'*®
indirections, hence the field at

ythe pair of equal and opposite elements of solid angles, is
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Fig. 2.25,

repeated his ex-

zero. Similarly the remaining surface of the sphere can be divided
into pairs of elements, hence the electric field at point C due to the

whole charge on the shell comes out to be zero.

Thus we see that the resultant electric intensity at this point
C is zero, if the inverse square law holds good. Therefore ihe

inverse square law is proved if electric field
inside the charged shell is zero. This was ex-

perimentally shown by Cavendish. In his ex-

periment a conducting sphere A was support-
ed inside a bigger concentric sphere B, The^^e
were insulated from each other. The outer
sphere B was first charged and connected with
sphere A with the help of a wire H. Tne
connection between these spheres was broken
and the residual charge on the inner sphere
was tested by electroscope. No charge was
found on the sphere A. Thus he proved that

the exponent n in the force (i.e. power of r in

the relation for electric field) law was two. He
periment many times and found that n was between 2.02 and 1,98.

Cavendish did not publish his results so that almost no body knew
about them at that time. Maxwell repeated Cavendish’s experi-
ment with more accuracy and obtained values as2i5xl0"^. In
1936, Plimpton and Lawton repeated the experiment again and set

the limits as 2±2x 10~®. Thus we see that the inverse square law
is correct, but not exactly.

2.12. MECHANICAL FORCE ON THE CHARGED
^DOCTOR

We kn?yw that similar charges repel each other, hence the
charge on any part of surface of the conductor is repelled by the
charge on its remaining part. The surface
of the conductor thus experiences a
mechanical force as the charge is bound
to the surface, 'ihe electric intensity ai
any point P near the conductor surface
can beassumed as due to the small part
of the surface of area say BS immedia-
tely in the neighbourhood of the point
under consideration and due to the rest
of the surface. Let Ej and Eg be the
electric intensities due to these parts
respectively. We know from Coulomb’s
theorem that the total electric field E (=Ei+E 2) has magnitude (ffia
at any point P just outside the conductor and is zero at point Q
just inside the conductor, i.e..

Fig. 2.26.

=ff/i

and
«

• • Ei=E^=a]2£Q.

=0
at point P
at point Q
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d.e r"
ahSEi^ohS o/2Eo=(T*85/2eo.

ductor
“"chanical force per unit area on the charged con-

«V2e„=(e„^)72£„=e„£2/2.
...(59)

normal. If the imed'ium™h*'^of
along the outdrawn

tion becomes
of dielectnc constant A:, the above rela-

Outward mechanical force/area
*=J

in a d^^ectric^u'cbTreed *a ‘In
a conductor situated

done xTSinc/r^olu^rsLo^^

energy stored up in unit volume of the mediJ!^ is““'

^okE^, joule //M^
...(60>

^et us consider few applications of the mechanical force.

proved in mechanics
to surface tension T is giveTby^*

^

P=47’/r.

lechanical pre^surV*
given a charge q, then the outward

a
2e,

£
47rr^

• • Net excess of pressure

llTzH^r

327z\r^
T

l2Sn%, ...(61

bubblJ decreLe? and thtrefS’W^h °f
crease in radius ^SSt "

We know that Pa l/F or Pccl/r* (=k/r»).
dP
dr

3k
r* dP.
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As change in pressure due to charge q. dP=iqy32n%r*), hence

dr=
qi

3P 32’t^Eo'-* “
96so7t-/>r3

...(62)

(//) Formation of a cloud on charged particles. We have

tinn
tension helps in the contrac-

pivpn
*^®/"ward pressure is ITjr. If charge q is

rhartYA
outward mechanical pressure due to this

the
greater than the former,

harnT contracting. On the other

larap thVf
<^^op is uncharged, i.e,, the former is very

Iv smili
'uncharged particles is extreme-

van^ur
charged particle present in saturated

Thus a
^riridenly cooled, drops of finite size will be formed.

presence nf ru^
^-saturated vapour may be used to detect the

Wilson
principle was used by C.T.R.

the aDoaratn. Tu radioactive particles. The discussion of

the limit oHhis book,
’ Chamber is beyond

determination of electronic charge

J
the electronic charge was made

’ilson and^n^
“*^^1 a method developed by C.T.R.

based on the
^

°°t
by H.A. Wilson. The method was

formed on charged
• be

do^Ii with ?ceSn°“^ This cloud falls

value of V wa/ ''^locity was observed and the

higher than thp St
value so obtained was 40%mgner than the standard value determined later.

nature ofS, not only demonstrated the discrete

SrarfndSnat'^^’f^f the correct value of the charge

parallel hori7r»nt i

^ experiment two actually
al metal plates A and B are insulated from each

Fig. 2.27.
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other and separated by ebonite or glass pieces of thickness about a
®tn. Potential difference is applied between these plates by connec-
ting a power supply through a reversing switch with the help of
which the direction of electric current can be changed or can be
set zero. The upper plate A has some fine holes, through which few
of the droplets of a non-volatile oil from an atomiser are allowed to
fall. A majority of these drops becomes charged by friction at the
atomiser nozzle during the time of spray. The droplets, illuminated
by the light beam, appear as tiny bright stars falling slowly with a
^rminal velocity governed by their weights, viscous force and by
buoyant force. These droplets are observed through a microscope M
whose eyepiece carries a micrometer scale at the position of cross
wires to measure the distance travelled by the droplets.

When electric field is not applied, a drop falls down under
gravity, opposed by the viscous force and bouyancy force and
acquires a steady terminal velocity v. If a be the radius of the oil
drop, p the density of oil and o the density of air then by Stokes
law, we get

or

Viscous force 6 ir y) a v=Appareat weight of the drop

= g—
a=[9y)v/2(p-ci)gy'% ...(63 )

If the charge on the droplet is n times the electronic charge,
denoted by e, and the plates are maintained at a potential differenceV such that E {—Vjd) is in downward direction. The forceon the vely charged drop will be in upward direction and having
value neE or neVjd. On the other hand the downward velocity
of+vel^y charged droplets will increase further and the velocity
ot uncharged particles remains same. If one of these droplets is
selected for observations. Firstly this droplet is allowed to moveunder the electric field. This field is so chosen that the droplet
moves with a constant velocity, known as terminal velocity. The
ve ocity V is measured with the help of a stop-watch. In equili-
brium, downward forces=upward forces, i.e.,

tna^Pg— -f 6:r»)av' -f neE

neE=g7’:a^(p~a) g— 67rif)av'=67rr)a[v— v'J

ne=9v'27rY)»'2 (p-c)-^E g-1/2 v^'-^(v~v')lE
or

2v)« -]l/2 yl/2

...(64)

The value of ne is calculated for each set separately by obser-

M fleScSn^^
droplets in the presence and in the^abLnce of

vie highest common factor of all such values. Milikan measured
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the charges of some thousands of drops and found that the charge
on any one droplet was integral multiple of a basic charge e. He
gave the value of e as 1.60207 x 10’^® coulomb.

Exercises

Example 1. Prove that the gravitational force is negligible in

comparison to electrostatic force in the hydrogen atom in which ihc

electron and the proton are about 5.3xl0~^^ meter apart.

From Coulomb’s law, the electrostatic force between electron
and proton

0

=(9.0 X 10» newton. mVcouP)
(5.3x10"^^ meter)-

= 8.2 X 10"® newton.

From gravitational law, the gravitational force

F,=G—
r-

= (6-7xl0-« N.m-lkg^)
kg

)

(5.3x10-11 meter)"—3.69x newton.

which is about 10“®® times smaller than the electrostatic force,
thus can be neglected in comparison to the latter in nuclear or
atomic problems.

Example 2. Two pitch balls
^ each weight 100 mg and suspen-

edfrom the same point by silk threads, 30 cms, long, are equally
charged and repel each other to a distance of 10 cms. What is the
charge on each ball ?

Let two pitch balls each having a charge q are suspended from
the same point P, Due to repulsive force they are at a distance r
apart. Each ball is acted upon
by following forces

:

(a) Its weight acting vertically
downward

mg=100xl0-«kg.X9.8 meter/sec-
=9.8 X 10"^ newton.

(b) Force of repulsion acting
along F

F=:
47r£o r

9x 10® nt m2
X 9

-

couF " (0.1 metre)2

=9 X 10^^ q- newton.

(c) The tension T of the string
acting along the string, along T. Fig. 2.28
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point ofSspSonp“wnrbe any point say

or

mg (r/2) sin g-F(rl2 ) cos 0 or F=mg tan 0

9 X 10“ ^*=9.8 X 10-< 5 xl0-i
(30’*— 5*)i/2x 10~*

9’“=1.841 X 10-“ and 9=1.375x 10"* coulomb.

mTFo-* ^andifxfo-o
^ charges of 16K

md^ respuMy. Find ,ke lntensl!ff,ZfMt‘'poM A
°

to ice Hs e!5?o by^the reS? ^

1

where r isalon^ r increasing.

As E is a vector quantity,
the total intensity at B is the
vector sum of three intensities
due to charges at A, C and D
where ’

47r£0 r Fig 2.29,

OviniN/- 1 ^x 10"®JXIO X --(r7yj;r-=9xl0< along AB
t0 04 )

Ec=9 X 10»x —1

and ^d= 9 xl 0®x

0 . 04 )

?1 X I"-

9

9 xl 0^aIoa'! QC

“
X 10 alon^ DB

Resultant intensity E-=E^+E„+ Ei.

^=ViEaF+E,^)r.^[(E, + E, cos 4 Sr~i-{E,~^Ed sin 45^]
— VlFa^+Ed^ + Ec^+l Ed (Ea cos 45°— ZTc sin 45'’)]

9\/3x 10^ newtons/coul.



iSIectric Charge and Electrostatic Field 63

and tan ^__E,-Easm 45° (1-1/V2)9X10«
Em Ea+Ei COS 45° (1+ 1 /v'2)9 X 1

0«

=0.171

or «=9® 44'.

Example 4. An electron is constrained to move along the axis
of the ring of charge q and of radius a. Show that the electron can
perform oscillations whose frequency is given by

to=V«^/47reg ma^.

Electric intensity E at a point P on the ir

StSnS^
distance X from its centre, as given in article 2.4^1

£= 1 qx
...(26)

It is along the axis of the ring.

The force on the electron if placeij at point P
P^qexIUtQ

W d^xfclt Fjm
X

Exan^tple.S. Show the variati n of electrir .

posuivi chjrgj in the ^.,old ato n .'Z - 79).
^

Gold atom is spherical and is of radius I y lo-i®
positive charge of the atom is / . x

! 6 x lo-i» '

ul .Z
'

butcd uni ormly wiihin the nudes of radius 6 9 xiKc eerie iinen iiyoutsi.eth. nucleus is given
'

by 't„e rcTat on

.

" 4-r

At the surface of atom r=]0~i“ meter

jg x IQ. nt. mVcoul^) (79x 1.6xl0-« coul)
( 10“^®^eter)®

= 1.14 X 10^* nt/coul.
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At the nuclear surface r=i?=6.9x IQ-w meter and

,
(9 X 1 0» nt. mVcouP) ('79 X 1 ,6 X I0-i» coul

(6,9 X 10“^® meter)^

=2.39X10^1 nt./couL

nucleus the electric intensity is given by thc^
Inside

relation
the

£*=

—

Atiz
s_ r.

It is zero at the centre (r=0) and increasec witH r

• • • • <»

In this problem x, y and z are the unit vectors along x v and zaxes respectively, generally taken as i, j and k.
® ^

Since the electric flux is defined as (I)=E.S. The vectorsur^ce area in the ;r-y plane will be in the direction of the outdrawn normal, i,e., the z-direction. Therefore
A

s=100 z(=100k)

A A A A
4)=E-S.=(8:K:+4y+3z). ICO z

=300 units.

the If ^ and the radius ofthe arc be a. If the arc is divided into small segments, so that each
wi 1 work as a point charge. The electric

at point P due to a segment of length

AE= 1 aal
Am.

0

Its jc-component A£',=AE cos 0 will
be cancelled by the contribution from a
symmetrically placed AL on the left half of
the arc, hence net component £'„;=SA£’,r=0.
Thus the y-component contributes to E
only.
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• • £=£«= A£i -z dl sin B.
47rS(jO^

To convert two variables / and B in one. let us use the relation
a/— fl dQ (arc=radiusX angle subtended by the arc at the centre).

• • sin B dB,

=A/27T£(ja.

Example 8. A delectric cylinder of radius a is infinitely lone.
It IS non-uniformly charged such that volume charge density 9 varies
directly as the distance from the cylinder. Calculate the electric inten-
sity due to It, if p is zero at the axis and is on the surface

net charge within the charged cylinder, let usdivide It in large number of co-axial thin cylindrical shells. Con-Sider a co-axial shell of radii x and x+Sx: and of length /
’

If thethickness Sx is very small so that the charge density can be assumedas constant at each point on it. Thus the charge on th^ sLll

Sx p.

As p varies directly as the distance x, hence 9as cx, where c is a constant given by the relation
ca= 9, or c= 9ja.

can be written

infensity at any point P can be
article 2.9 (d). The field E at the point at a
cylinder is given by

calculated as given in
distance r outside the

E 2Tzrl=-^

Charge inside the gaussian surface is the charge on the

cylSd".°^

« t
=__L_P

27tr/£o Jo
27c/cx“ dx — ca8

3re,

At points inside the cylinder, E is given by

7

£'=cr73co=p.rV3aso.



f6 Electricity and Magnetism

At the points on the surface of the cylinder, E=^sal3t^

In all the cases the field is in radially outward direction.

Example 9. Calculate the electric field intensity due
spherical charge distribution, given by

to

9-~PoU^rla), when r<a

and 9=0 when r>a.

Find the value of rfor which E is maximum*

•pu
consider a thin spherical shell of radii x and x-^'dx*

The volume of this shell ^V^Aiix^dx, To calculate electric field
intensity let us assume a gaussian spherical surface passing through
the point which is at a distance r from the centre. Using Gauss’s
law, we get

Anx^dx.

.Here integration is between x=0 to x=a, as the whole charge ]
IS within the gaussian surface.

or

j EdS=4Tzr^ £=TrPja»/3eo

Field inside the charge distribution is given by

I.
dS

integration is between ;c=0 to A:=r, as the charge inside
the gaussian surface is the charge within the sphere of radius r

or

§ EdS^Anr^
^0

E=~^ r T
"o L 3 4a J

Electric field E will be maximum, when

r=2a/3.

L 3 4aJ.

d_

dr

^ ° pictured as a spherical
rmcleus with charge 4-q and radius a embeded in a much larger sphere
of negative charge, the electrons. This negative charge is distributed
uniformly throughout this sphere of radius b. Find the electric field
intensity outside the nucleus,
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The total charge inside the gaussian surface passing throughany point outside the atom is zero, hence by Gauss’s law
*

As surface area dS is always l| to the radius vector, hence Ecannot be J_ to dS and thus zero.

^ inside the atom but outside the nucleus and a di<!-
tance r apart from the centre of the nucleus, the total charge with-in the gaussian sphere is Eq=cf-{iT::r^) p.

®

4 .In

£47tr2 or £=
4n€

0

The first term is due to the nucleus whifp th#* *

sents the cancelling field due o dectroL^^^M^^
nucleus the second fern, is negligible The nudeST inS'?

T

e'lS'roSs rf?h°=“a°om“'
''°™

S Sf r/"& S/e'ff/t'T'plates and is assumed connected to the earth
^ ^

ceuiral' pir'dtlyfe Sfas‘‘r,"Sre“,i'',he'ifn'’=s 0?'/““ !'>'

plate has a net charge+a
^

Fig. 2.31
‘r r .

. < The same result c^n be obtained by using Gauss’s

TK gaussian surface shown by the doited linesinus.by Gauss’s law.

law. Con-
in Fig. 2.31.
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hencp'^y^
® gaussian surface is zero^

be true only if the charge OE

on the ^ieft
^ opposite to the charge

nght side will be equal and opposite to the charge on the right

of the electric field strength

the flS’To'f E tbrough'each of tte' ftoes wil “K''‘
Charge q is placed at the centre.

‘

• • 0=60s=qlsa or 0s=ql6s,

In the sccoqcI c&se« tvhen /? ic of ^i. • *

through each of the three faces meeting at th-
''entices, the flux.

as E is parallel to these surfaces The flux thm*
will be same, say 0^. We know

o'ber three faces

originating from charge q passes throimh
^.°®‘C'8bth of the flux

the cube meeting at the charge include^one^piohth^’ r
faces of

surface drawn with charge q as centre
'Cgbth of the spherical

.. 30j=-^
-^ , or d>5=—

bases, (ii) the curved surfJee^of'a fhht

centre.
^ ’ ° ^he ^charge q situated at its geometrical

L electric flux through
,

of the cylioner, let us divide
tne base (say lower) into large number
ot conceniricr mgs. The electric field

betwp^
^ of an annular ring

between radii r and r+Sr is

^

^ 9/‘^^So(^^+/V4) along OP.
through a very small element

of this annular ring is £ cos X area.
ot the element. As £ cos is same
or all elements on this annular ring,
nence the flux through this annular ring

80=£ cos 0,27^r8r

^ q.lTzrSr c-s 6 _ girSr

^7ttQ{r^~i-r^/4) 4£o(r2+/V4)"/2
Fig, 2.32
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• « Total flux through the base of the cylinder

<.= [
qlrdr

0 4so(r2+/V4)3/2

112

.i+ /V4)1/8 j'

By symmetry the flux through the above base will also be
'^ame. As the total flux originating from a point charge is always

hence by Gauss’s law

^ curff«d“f" 20iases—

or ^curved—=-5-^r 1-
'*0 ^0 L

1/2

(a2+/V4)i'^ 2£o(fl'+ /V4)*/2

Example 14. Calculate
sham in Fig. 2J3, where
^00 nt/coul-m^^-.

electric jlux for a cube of side a as
Eyi^Eg^Oy a=10 cm and^bx^

Since the electric field
:and T'ccmponents are zero.

is acting only in ^-direction and its y-
The net electric flux is thus given as

^ ^ ^lahiturfac6~0 Uft surface

=SE.dS-^iE.dS
= {£’a:.fl») -(E^a~) ieft=a^[E2a- Ea\

=a^[b

=6^3®/“ (V2- 1)=800 X (0.1)'^/^
(^2- 1)

= 1.05 mks units.

^nn V ^he electric field near the earth's surface be

charn
^ directed downwards, what is the surface density ofCharge on the earth's surface ?

j j

j^st outside a charged conductor of surface
Charge density a is given by

^=ar/eo-
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1
.^° electric field near the earth’s surface

meter
a charged conductor, is given as 300 volts/

s'urfaif
“

• ®hLrge In the eanh’s.

a=eBE=8.85x 10-«X 300=2.66 X 10“® coul/m*.

^
16- A goldfoil weighing 50 mg per sq cm is placed'

plate. What would be the density of chargeso that the foil may just rise ?

Mechanical force per unit area of a charged plate=CTV2£(,.

In this problem outward mechanical force is balanced bv theforce due to the weight of gold foil. Hence at equilSm
uV2t^=mg, or o'^=2zo mg.

or

<r'=2 X 8.85 X 10-1® X 50 X 10-® X 9.8

0=9.3 13x10-0 coul/m®.

ttue °o''Jc?[,fdZjZnl!“

Pi=P+4T/r.

volume^’ecome's^
S^tSes^he^iJftiS^vol'^®’

becomes 2r, the-

law .h= p,«s„,e in^'r^h^bSk rSS'io J/s"' T?'

charge q given to the bubble.
^ outward pressure due to the

••• Total outward pressure =total inward pressure

i( f

)

or

9®=647t®Eo r®[7/>r+12r]

q=SnV eor“(7Er+ 12r).

charged witl^lo }mlcot!lomb“^‘‘F^d7he^tn^^^^^^ T'
’'adius is
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or

From Boyle’s law PV=coast=k

Pressure P of a sphere of radius R=kl{^nR*)=^KlR\

Differentiation gives dPldR=—3KlR*=—3PlR

dR=~iRl3P)dP.

The change in pressure due to the charge q is given by

—dP^-

• • dR=

a*/2eo=-C^/47rR«)V2eo.

dP=
3P 3P 32t:\R^ 967t»eoPi?8

Given ^'=20 stat coul=20 e.s.u. of charge

=20x3.36X10-1'’ coul.

Thus the substitution of numerical values gives
</P=5.3xlO-»cm.

J^dikan's experiment an oil drop of radius

If the rtrnr, u
^‘^^P^'l^ed between the plates which are I cm apart.

between the
d, calculate the potential difference

p ates. The density of oil may be taken as 1.5 gm.jcc.

viscou^'forrl*^^
remains suspended between the plates, the

balanced b5 the drop is

be the Doten?a^
®

*u
field between the plates. If VDC me potential difference between the plates, then

gE=mg or qVld=UrHp~tr)g.
9=5e=5x 1.6x lO-i® coul, d=l cm=0 01 m

air as nesHgiblc in^o
kjg/m». Assuming the density ofS g cm comparison the oil density, we get

0.01v=
5X1.6X 10-1» ><y X3,14 x(10-')*x 1.5 X10*X 9.81

=770 volts.

Oral Questions—

could you° ni me «Tgn onhe"cbiU°o“n‘^tT“'“'

mass
?'*^*^*'*°^ ‘^faargc is 1.6 k 10"18 coul, is there any single quantum of

3.

4 .

5 .

physical quantity to be (a) quantized or {by

valSe*^w Coulomb’s law is a measured-

^hV^earth Jv
gravitational field of earth. Can we also say thattne earth lies in the gravitational field of the stone ?
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6. Electric lines of force never cross, why ?

7. Two point charges arc placed at a certain distance apart. The electrio
field strength is lero at one point between them. What can you conclude
about the charges ?

8. What is rhe electric flux through a surface encloses an electric dipole ?

9. A charge q is placed inside an enclosure. Compare the total flux coming

?i I®
spherical, cubic, rectangular,

parallellopiped or hemisphere.

30. Show that ro work is done in moving the test charge from point to point
on the surface of the metal.

31. A man is placed with an electrical measuring instrument inside a large
closed metal sphere. What will the man observe as {a) charge is placed on
the sphere, or {b) a large charged object is brought close to the sphere ?

32. As you penetrate a uniform sphere of charge, find the effect on E while
moving towards the centre.

13. A spherical jubber balloon carries a charge that is uniformly distributed
over Its Surface. How does E vary for points {a) insioe, {b) on the surface
and (c) outside the balloon, as the balloon is blown up ?

14. In Milikan’s apparatus, how can you find the sign of charge on the drop-
lets from the atomiser.

Problems— j
1. In the Bohr model of atomic hydrogen an electron of mass 9.11 x

kg revolves, al out a nucleus consisting one proton, in a circular orbit of
radius 5.29x m. If mass of proton is 1.67 x 10-^7 kg, calculate the radial
acceleration and angular velocity of the electron.

2. 3f two equally charged balls of identical masses of 0.20 gm are suspen-
ded from 50 cm long strings. Calculate the value of each charge, if the strings
make an angle of 37® to the vertical. (3.2x 10'7 couO

3. Two charges Q and Q are placed at the diagonally opposite corners
of a square, while charge ^ and g are placed at the remaining corners. If the
resultant force on one charge Q is zero, find the relation between Q and q,

(G=2v/29)
4. A pith ball covered with tin foil having a mass of m kg hangs by a fine

silk thread /metre long m an electric field £*. When the ball is given electric
charge of q coulomb, it stands out d metre from the vertical line. Show that
the strength of the electric fleld is given by

f—rogd/qv^l^— newton/coulomb.

5. If a uniform sphere of charge radius and charge density phasa
narrow straight tunnel along its diameter, and a point charge

—

q' is placed
at the entrance to the tunnel and released. Show that its motion is simple
harmonic. Find the period of this motion and the maximum velocity acquired
by the charge— Given the mass of the charge q' as m.

2n[

6. A thin circular ring of radius 20 cm is charged with a uniform c''argo

A small section of 1 cm length is removed from the ring,
^ina the electric field intensity at the centre of the ring. (2.25X x 1 09 iV/C)

7. Prove that the electric field intensity due to a uniformly charged ring
ts maximum at a distance l/\/2 limes its radius form the centre on its axis.
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8. The inner surface of a noa-cooducting hctni-sphcrical bowl of radius

a has uniformly spread charg: of surface density a over it. Find the electric

field at the centre of the flat surface of the bowl. (o'/4eQ NjG)

9. A small sphere whose mass is 1 x 10“'* kg carries a charge of 3 x

coul rnd is attached to oae cod of a siik fibre 5 c.n Ijog. The other end of

the fibre is attached to a U'ge vert. c ii conducting pUic whic i has a surface

charge of 25 X C/m-, Ftnd the angle which ihe fiber aiikei with the

vertical. (41«)

10. Five thousand lines of for.'c enter a certain v alutne of space anl three

thousand Hoes emerge from it. What is the total charge in coulo nbs within

Ihe volume ? (—'1-77 x lO 8 coulonib)

11. A spherical shell of outer and inner radii a and 6 respectively is con-

centric to a metal sphere (of radius c) inside the shell. Find ihe net charge on
the outer surface of the spherical shell, if the electric field at a pfint^ P outside

the shell at a distauce 40 cm fro n the cenire is 200y^/C. (3.55 x 10 ^ coulomb)

12. A cylinder of radius b is uniformly charged with a volume charge

density p coul/ma. Find expressions tor the electiic field as a function of r for

inside and outside the cylinder, if the charge density varies as b' = pQ
within

the cylinder. (Por'/S^o, Po^VS^oT)

13. Calculate the electric field intensity at a point (/) inside and (ii) outside
the spherically s/mraetric charge distributnn of radius a. The charge volume
density varies as p(^)=*Po (1— inside and is zero outside the
distribution.

14. A circular ring of radius a carries a charge which varies as A sin $.
rJnd the electric field at the centre of the ring. (Ao/4u£o)

15. A l^ng conducting cyliader of leng'h / carrying a to^al char le issurrounded by a conducting cylindrical shell of total charge—2^. CaUulate E
{0 at point outside the shell and (//) in the region between che cylinde's.

Ir radially inward, radially outward)

16. Three infinite metal plates A. B, C are arranged parallel to each orher.

® ‘='‘‘'8= densiiyrron both the

7er h\ C ;; fi M • tp
unknown cnarges. but ilie arraagam.-nt producjs

fhfc
® >“ tl^ region lett to plate A and right to olate C, outside

elertric intensity at points between 4 and S,
(u) charges on the two sarfaces of pUte =

iVMii/rU
infinite wires carry uniform coirges of aid Ag^ui/m. If the separation of the wirej is 9, fin J the force on uiii length ofone as a result of the other.

R 3p thin naetaihe spherical s lells ofradii Ri and TJg where
.Ki <3 /<a near cnarges and q^ c )uloinos respectively. Using Gauss The are n,

'Show that

(fl) The electric field intensity at radius is zero,

(6) The electric field io'ensity at radius r between and 7?2 *9
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and (cMhc electric field intensity at radius is

surface of the earth/ ifhas a chflt*
stretched horizontally 4 meters above the

calculate the electric field at a nnln^^
microcoulomb per cm of its lengthy“cia at a point on earth vertically below the wire.

2Q ^
(^-5 X J05 ntlcouiy

coul cm-2. ^
is 'ihe

®

conductor, in dry air, is 2.67x I0*'i3
IS me lorce per unit area due to this charge.

21 Find h
H.03x

10 cm diameter i^he dielectr[f

^

°

22
(0.55 micro couhmb)

distance equa/tn
the surface of a gold nucleus, is atla

the ^.particle
(6.9x10-16 m) from the surface. If

the force and acccleratTon of {he"* nh'®? '^8, calculate°° i-Particle. (l.9x lOi N. 2.8 x 1028 m/secV
^ ^IcV CC f* 1

having 80 protons. Calculate thp towards a stationary nucleus'-dieuidte the distance of its closest approach.

24. Elect-
(l.44xI0-iBm)

within a spherical P P'^ unit voJume is distributed

culate «he electric field at°a no'inf r
‘b’ respectively. Cal-

('> «<r<l and (“o

''

_
P

3c
9

P

3e 0

lo excess eJectrons°*^ Whaf k
^ radius 2x io-4 cm carries

is no electric fie1d"^(M ® region
WC, directed downward 7 Givei ihe vk/ •!

electric field 3x lO®Give
y

he V scousity of air=1.80 x 10-7 ^ sec./m^.

26 A bubhl f -

' ^/sec.t 2.74x10 ^ mfsec. upward)

tension T. Jf the bubble having a surface
wire from a static machine! sLw that th

^ V by being touched with a
given by ^^lat the radius of the bubble increases to r..

P(r^-aWT(r2-.^)^ie y2^^Q
where p is the atmospheric pressure.
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3.1. ^in£integral of electric intensity
In mechanics, the line integral plays a very fundamental role

in problems involving work. Its importance is equally great in
electrostatic problems. We know that if a force F acts on a body
while the body suffers a displacement dl, the work done

dJV=¥ . dl^F cos 6 dl, ...(1)

** angle between F and dl and F cos 6 is the component
ofF along the direction of displacement. For a path of finite
length, work

F . dl. •••(2 )

Fig. 3.1.

It is the another use of scalar product of two
vectors, one was discussed in chapter 2 where it
was applied to the surface integral. One should not
confuse as the integral for flux is taken over a

Une
integralfor work is taken along a

Wc know that the earth’s gravitational field,
a vector field, is a conservative field. For a conserva.
tive field the potential energy of a system is indepen.
dent of the path taken and is defined by its position

S’ "a necessary to

hof^ ^'’T another is independent of the path

field an 'eUctrir%i7̂ electrostatic

Mterna?forMF=-«P*^®
test charge will be Hence the

External worV n(.o5«
** required to displace the test charge q^.External work necessary to move the test charge through a


